Extensions 1→N→G→Q→1 with N=C6 and Q=C4.D4

Direct product G=N×Q with N=C6 and Q=C4.D4
dρLabelID
C6×C4.D448C6xC4.D4192,844

Semidirect products G=N:Q with N=C6 and Q=C4.D4
extensionφ:Q→Aut NdρLabelID
C61(C4.D4) = C2×C12.46D4φ: C4.D4/M4(2)C2 ⊆ Aut C648C6:1(C4.D4)192,689
C62(C4.D4) = C2×C12.D4φ: C4.D4/C2×D4C2 ⊆ Aut C648C6:2(C4.D4)192,775

Non-split extensions G=N.Q with N=C6 and Q=C4.D4
extensionφ:Q→Aut NdρLabelID
C6.1(C4.D4) = C42.D6φ: C4.D4/M4(2)C2 ⊆ Aut C696C6.1(C4.D4)192,23
C6.2(C4.D4) = (C22×S3)⋊C8φ: C4.D4/M4(2)C2 ⊆ Aut C648C6.2(C4.D4)192,27
C6.3(C4.D4) = C4.Dic12φ: C4.D4/M4(2)C2 ⊆ Aut C6192C6.3(C4.D4)192,40
C6.4(C4.D4) = C4.D24φ: C4.D4/M4(2)C2 ⊆ Aut C696C6.4(C4.D4)192,44
C6.5(C4.D4) = M4(2)⋊Dic3φ: C4.D4/M4(2)C2 ⊆ Aut C696C6.5(C4.D4)192,113
C6.6(C4.D4) = C24.3Dic3φ: C4.D4/C2×D4C2 ⊆ Aut C648C6.6(C4.D4)192,84
C6.7(C4.D4) = C12.(C4⋊C4)φ: C4.D4/C2×D4C2 ⊆ Aut C696C6.7(C4.D4)192,89
C6.8(C4.D4) = C42.7D6φ: C4.D4/C2×D4C2 ⊆ Aut C696C6.8(C4.D4)192,99
C6.9(C4.D4) = C12.9D8φ: C4.D4/C2×D4C2 ⊆ Aut C696C6.9(C4.D4)192,103
C6.10(C4.D4) = C12.5Q16φ: C4.D4/C2×D4C2 ⊆ Aut C6192C6.10(C4.D4)192,105
C6.11(C4.D4) = C3×C23⋊C8central extension (φ=1)48C6.11(C4.D4)192,129
C6.12(C4.D4) = C3×C42.C22central extension (φ=1)96C6.12(C4.D4)192,135
C6.13(C4.D4) = C3×C4.D8central extension (φ=1)96C6.13(C4.D4)192,137
C6.14(C4.D4) = C3×C4.6Q16central extension (φ=1)192C6.14(C4.D4)192,139
C6.15(C4.D4) = C3×C22.C42central extension (φ=1)96C6.15(C4.D4)192,149

׿
×
𝔽