Copied to
clipboard

G = C12.(C4⋊C4)  order 192 = 26·3

7th non-split extension by C12 of C4⋊C4 acting via C4⋊C4/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.7(C4⋊C4), (C2×C12).5Q8, (C2×C4).12D12, C4.Dic32C4, (C2×C4).1Dic6, C4.32(D6⋊C4), (C2×C12).103D4, (C22×C12).3C4, (C2×C6).18C42, (C22×C4).72D6, C12.8(C22⋊C4), C4.7(Dic3⋊C4), C6.7(C4.D4), C22.9(C4×Dic3), (C22×C4).5Dic3, C31(C22.C42), C2.2(C12.D4), C6.7(C4.10D4), C22.9(C4⋊Dic3), C23.28(C2×Dic3), C2.2(C12.10D4), C6.6(C2.C42), C2.7(C6.C42), (C22×C12).119C22, C22.27(C6.D4), (C6×C4⋊C4).2C2, (C2×C4⋊C4).3S3, (C2×C4).18(C4×S3), (C2×C6).36(C4⋊C4), (C2×C12).55(C2×C4), (C2×C4.Dic3).6C2, (C2×C4).175(C3⋊D4), (C2×C6).88(C22⋊C4), (C22×C6).125(C2×C4), SmallGroup(192,89)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C12.(C4⋊C4)
C1C3C6C12C2×C12C22×C12C2×C4.Dic3 — C12.(C4⋊C4)
C3C6C2×C6 — C12.(C4⋊C4)
C1C22C22×C4C2×C4⋊C4

Generators and relations for C12.(C4⋊C4)
 G = < a,b,c | a12=c4=1, b4=a6, bab-1=a-1, cac-1=a7, cbc-1=a9b3 >

Subgroups: 200 in 98 conjugacy classes, 51 normal (25 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C3⋊C8, C2×C12, C2×C12, C2×C12, C22×C6, C2×C4⋊C4, C2×M4(2), C2×C3⋊C8, C4.Dic3, C4.Dic3, C3×C4⋊C4, C22×C12, C22×C12, C22.C42, C2×C4.Dic3, C6×C4⋊C4, C12.(C4⋊C4)
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C42, C22⋊C4, C4⋊C4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2.C42, C4.D4, C4.10D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C22.C42, C6.C42, C12.D4, C12.10D4, C12.(C4⋊C4)

Smallest permutation representation of C12.(C4⋊C4)
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 80 34 64 7 74 28 70)(2 79 35 63 8 73 29 69)(3 78 36 62 9 84 30 68)(4 77 25 61 10 83 31 67)(5 76 26 72 11 82 32 66)(6 75 27 71 12 81 33 65)(13 44 91 57 19 38 85 51)(14 43 92 56 20 37 86 50)(15 42 93 55 21 48 87 49)(16 41 94 54 22 47 88 60)(17 40 95 53 23 46 89 59)(18 39 96 52 24 45 90 58)
(1 38 25 54)(2 45 26 49)(3 40 27 56)(4 47 28 51)(5 42 29 58)(6 37 30 53)(7 44 31 60)(8 39 32 55)(9 46 33 50)(10 41 34 57)(11 48 35 52)(12 43 36 59)(13 64 88 83)(14 71 89 78)(15 66 90 73)(16 61 91 80)(17 68 92 75)(18 63 93 82)(19 70 94 77)(20 65 95 84)(21 72 96 79)(22 67 85 74)(23 62 86 81)(24 69 87 76)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,80,34,64,7,74,28,70)(2,79,35,63,8,73,29,69)(3,78,36,62,9,84,30,68)(4,77,25,61,10,83,31,67)(5,76,26,72,11,82,32,66)(6,75,27,71,12,81,33,65)(13,44,91,57,19,38,85,51)(14,43,92,56,20,37,86,50)(15,42,93,55,21,48,87,49)(16,41,94,54,22,47,88,60)(17,40,95,53,23,46,89,59)(18,39,96,52,24,45,90,58), (1,38,25,54)(2,45,26,49)(3,40,27,56)(4,47,28,51)(5,42,29,58)(6,37,30,53)(7,44,31,60)(8,39,32,55)(9,46,33,50)(10,41,34,57)(11,48,35,52)(12,43,36,59)(13,64,88,83)(14,71,89,78)(15,66,90,73)(16,61,91,80)(17,68,92,75)(18,63,93,82)(19,70,94,77)(20,65,95,84)(21,72,96,79)(22,67,85,74)(23,62,86,81)(24,69,87,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,80,34,64,7,74,28,70)(2,79,35,63,8,73,29,69)(3,78,36,62,9,84,30,68)(4,77,25,61,10,83,31,67)(5,76,26,72,11,82,32,66)(6,75,27,71,12,81,33,65)(13,44,91,57,19,38,85,51)(14,43,92,56,20,37,86,50)(15,42,93,55,21,48,87,49)(16,41,94,54,22,47,88,60)(17,40,95,53,23,46,89,59)(18,39,96,52,24,45,90,58), (1,38,25,54)(2,45,26,49)(3,40,27,56)(4,47,28,51)(5,42,29,58)(6,37,30,53)(7,44,31,60)(8,39,32,55)(9,46,33,50)(10,41,34,57)(11,48,35,52)(12,43,36,59)(13,64,88,83)(14,71,89,78)(15,66,90,73)(16,61,91,80)(17,68,92,75)(18,63,93,82)(19,70,94,77)(20,65,95,84)(21,72,96,79)(22,67,85,74)(23,62,86,81)(24,69,87,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,80,34,64,7,74,28,70),(2,79,35,63,8,73,29,69),(3,78,36,62,9,84,30,68),(4,77,25,61,10,83,31,67),(5,76,26,72,11,82,32,66),(6,75,27,71,12,81,33,65),(13,44,91,57,19,38,85,51),(14,43,92,56,20,37,86,50),(15,42,93,55,21,48,87,49),(16,41,94,54,22,47,88,60),(17,40,95,53,23,46,89,59),(18,39,96,52,24,45,90,58)], [(1,38,25,54),(2,45,26,49),(3,40,27,56),(4,47,28,51),(5,42,29,58),(6,37,30,53),(7,44,31,60),(8,39,32,55),(9,46,33,50),(10,41,34,57),(11,48,35,52),(12,43,36,59),(13,64,88,83),(14,71,89,78),(15,66,90,73),(16,61,91,80),(17,68,92,75),(18,63,93,82),(19,70,94,77),(20,65,95,84),(21,72,96,79),(22,67,85,74),(23,62,86,81),(24,69,87,76)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A···6G8A···8H12A···12L
order1222223444444446···68···812···12
size1111222222244442···212···124···4

42 irreducible representations

dim111112222222224444
type+++++--+-++-
imageC1C2C2C4C4S3D4Q8Dic3D6Dic6C4×S3D12C3⋊D4C4.D4C4.10D4C12.D4C12.10D4
kernelC12.(C4⋊C4)C2×C4.Dic3C6×C4⋊C4C4.Dic3C22×C12C2×C4⋊C4C2×C12C2×C12C22×C4C22×C4C2×C4C2×C4C2×C4C2×C4C6C6C2C2
# reps121841312124241122

Matrix representation of C12.(C4⋊C4) in GL6(𝔽73)

800000
0640000
0007200
001000
00203401
003920720
,
0720000
100000
0051120
00516302
0072286862
0054712210
,
2700000
0460000
009800
0086400
0072206465
002027659

G:=sub<GL(6,GF(73))| [8,0,0,0,0,0,0,64,0,0,0,0,0,0,0,1,20,39,0,0,72,0,34,20,0,0,0,0,0,72,0,0,0,0,1,0],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,5,51,72,54,0,0,11,63,28,71,0,0,2,0,68,22,0,0,0,2,62,10],[27,0,0,0,0,0,0,46,0,0,0,0,0,0,9,8,72,20,0,0,8,64,20,27,0,0,0,0,64,65,0,0,0,0,65,9] >;

C12.(C4⋊C4) in GAP, Magma, Sage, TeX

C_{12}.(C_4\rtimes C_4)
% in TeX

G:=Group("C12.(C4:C4)");
// GroupNames label

G:=SmallGroup(192,89);
// by ID

G=gap.SmallGroup(192,89);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,253,64,387,184,1684,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=c^4=1,b^4=a^6,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^9*b^3>;
// generators/relations

׿
×
𝔽