Copied to
clipboard

G = C2×C12.46D4order 192 = 26·3

Direct product of C2 and C12.46D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C12.46D4, M4(2)⋊22D6, (C2×C4).49D12, C4.65(C2×D12), C4.28(D6⋊C4), (C2×D12).15C4, C12.416(C2×D4), (C2×C12).172D4, C61(C4.D4), (S3×C23).3C4, C23.60(C4×S3), (C2×M4(2))⋊10S3, (C6×M4(2))⋊18C2, (C22×C4).154D6, C12.53(C22⋊C4), (C2×C12).416C23, C22.50(D6⋊C4), (C22×D12).14C2, C4.Dic321C22, (C2×D12).250C22, (C3×M4(2))⋊34C22, (C22×C12).187C22, C32(C2×C4.D4), (C2×C4).52(C4×S3), C2.29(C2×D6⋊C4), C22.20(S3×C2×C4), C4.109(C2×C3⋊D4), C6.57(C2×C22⋊C4), (C2×C12).107(C2×C4), (C22×S3).5(C2×C4), (C2×C4.Dic3)⋊15C2, (C22×C6).70(C2×C4), (C2×C6).14(C22×C4), (C2×C4).256(C3⋊D4), (C2×C6).65(C22⋊C4), (C2×C4).120(C22×S3), SmallGroup(192,689)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C2×C12.46D4
C1C3C6C12C2×C12C2×D12C22×D12 — C2×C12.46D4
C3C6C2×C6 — C2×C12.46D4
C1C22C22×C4C2×M4(2)

Generators and relations for C2×C12.46D4
 G = < a,b,c,d,e | a2=b8=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b5, bd=db, ebe=bc, cd=dc, ce=ec, ede=d-1 >

Subgroups: 664 in 186 conjugacy classes, 63 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C8, C2×C4, D4, C23, C23, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C24, C3⋊C8, C24, D12, C2×C12, C22×S3, C22×S3, C22×C6, C4.D4, C2×M4(2), C2×M4(2), C22×D4, C2×C3⋊C8, C4.Dic3, C4.Dic3, C2×C24, C3×M4(2), C3×M4(2), C2×D12, C2×D12, C22×C12, S3×C23, C2×C4.D4, C12.46D4, C2×C4.Dic3, C6×M4(2), C22×D12, C2×C12.46D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, D12, C3⋊D4, C22×S3, C4.D4, C2×C22⋊C4, D6⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C2×C4.D4, C12.46D4, C2×D6⋊C4, C2×C12.46D4

Smallest permutation representation of C2×C12.46D4
On 48 points
Generators in S48
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 31)(18 32)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)(33 48)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 16)(2 13)(3 10)(4 15)(5 12)(6 9)(7 14)(8 11)(17 31)(18 28)(19 25)(20 30)(21 27)(22 32)(23 29)(24 26)(33 44)(34 41)(35 46)(36 43)(37 48)(38 45)(39 42)(40 47)
(1 47 23)(2 48 24)(3 41 17)(4 42 18)(5 43 19)(6 44 20)(7 45 21)(8 46 22)(9 33 30)(10 34 31)(11 35 32)(12 36 25)(13 37 26)(14 38 27)(15 39 28)(16 40 29)
(1 10)(2 8)(3 16)(4 6)(5 14)(7 12)(9 15)(11 13)(17 40)(18 44)(19 38)(20 42)(21 36)(22 48)(23 34)(24 46)(25 45)(26 35)(27 43)(28 33)(29 41)(30 39)(31 47)(32 37)

G:=sub<Sym(48)| (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,16)(2,13)(3,10)(4,15)(5,12)(6,9)(7,14)(8,11)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)(33,44)(34,41)(35,46)(36,43)(37,48)(38,45)(39,42)(40,47), (1,47,23)(2,48,24)(3,41,17)(4,42,18)(5,43,19)(6,44,20)(7,45,21)(8,46,22)(9,33,30)(10,34,31)(11,35,32)(12,36,25)(13,37,26)(14,38,27)(15,39,28)(16,40,29), (1,10)(2,8)(3,16)(4,6)(5,14)(7,12)(9,15)(11,13)(17,40)(18,44)(19,38)(20,42)(21,36)(22,48)(23,34)(24,46)(25,45)(26,35)(27,43)(28,33)(29,41)(30,39)(31,47)(32,37)>;

G:=Group( (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,16)(2,13)(3,10)(4,15)(5,12)(6,9)(7,14)(8,11)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)(33,44)(34,41)(35,46)(36,43)(37,48)(38,45)(39,42)(40,47), (1,47,23)(2,48,24)(3,41,17)(4,42,18)(5,43,19)(6,44,20)(7,45,21)(8,46,22)(9,33,30)(10,34,31)(11,35,32)(12,36,25)(13,37,26)(14,38,27)(15,39,28)(16,40,29), (1,10)(2,8)(3,16)(4,6)(5,14)(7,12)(9,15)(11,13)(17,40)(18,44)(19,38)(20,42)(21,36)(22,48)(23,34)(24,46)(25,45)(26,35)(27,43)(28,33)(29,41)(30,39)(31,47)(32,37) );

G=PermutationGroup([[(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,31),(18,32),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30),(33,48),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,16),(2,13),(3,10),(4,15),(5,12),(6,9),(7,14),(8,11),(17,31),(18,28),(19,25),(20,30),(21,27),(22,32),(23,29),(24,26),(33,44),(34,41),(35,46),(36,43),(37,48),(38,45),(39,42),(40,47)], [(1,47,23),(2,48,24),(3,41,17),(4,42,18),(5,43,19),(6,44,20),(7,45,21),(8,46,22),(9,33,30),(10,34,31),(11,35,32),(12,36,25),(13,37,26),(14,38,27),(15,39,28),(16,40,29)], [(1,10),(2,8),(3,16),(4,6),(5,14),(7,12),(9,15),(11,13),(17,40),(18,44),(19,38),(20,42),(21,36),(22,48),(23,34),(24,46),(25,45),(26,35),(27,43),(28,33),(29,41),(30,39),(31,47),(32,37)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A···24H
order122222222234444666668888888812121212121224···24
size1111221212121222222222444444121212122222444···4

42 irreducible representations

dim11111112222222244
type++++++++++++
imageC1C2C2C2C2C4C4S3D4D6D6C4×S3D12C3⋊D4C4×S3C4.D4C12.46D4
kernelC2×C12.46D4C12.46D4C2×C4.Dic3C6×M4(2)C22×D12C2×D12S3×C23C2×M4(2)C2×C12M4(2)C22×C4C2×C4C2×C4C2×C4C23C6C2
# reps14111441421244224

Matrix representation of C2×C12.46D4 in GL6(𝔽73)

7200000
0720000
001000
000100
000010
000001
,
100000
010000
000010
000001
00661400
0059700
,
100000
010000
001000
000100
0000720
0000072
,
010000
72720000
0072100
0072000
0000721
0000720
,
010000
100000
0059700
00661400
0000597
00006614

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,66,59,0,0,0,0,14,7,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,59,66,0,0,0,0,7,14,0,0,0,0,0,0,59,66,0,0,0,0,7,14] >;

C2×C12.46D4 in GAP, Magma, Sage, TeX

C_2\times C_{12}._{46}D_4
% in TeX

G:=Group("C2xC12.46D4");
// GroupNames label

G:=SmallGroup(192,689);
// by ID

G=gap.SmallGroup(192,689);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,422,58,1123,136,438,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^5,b*d=d*b,e*b*e=b*c,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽