direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C12.46D4, M4(2)⋊22D6, (C2×C4).49D12, C4.65(C2×D12), C4.28(D6⋊C4), (C2×D12).15C4, C12.416(C2×D4), (C2×C12).172D4, C6⋊1(C4.D4), (S3×C23).3C4, C23.60(C4×S3), (C2×M4(2))⋊10S3, (C6×M4(2))⋊18C2, (C22×C4).154D6, C12.53(C22⋊C4), (C2×C12).416C23, C22.50(D6⋊C4), (C22×D12).14C2, C4.Dic3⋊21C22, (C2×D12).250C22, (C3×M4(2))⋊34C22, (C22×C12).187C22, C3⋊2(C2×C4.D4), (C2×C4).52(C4×S3), C2.29(C2×D6⋊C4), C22.20(S3×C2×C4), C4.109(C2×C3⋊D4), C6.57(C2×C22⋊C4), (C2×C12).107(C2×C4), (C22×S3).5(C2×C4), (C2×C4.Dic3)⋊15C2, (C22×C6).70(C2×C4), (C2×C6).14(C22×C4), (C2×C4).256(C3⋊D4), (C2×C6).65(C22⋊C4), (C2×C4).120(C22×S3), SmallGroup(192,689)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C12.46D4
G = < a,b,c,d,e | a2=b8=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b5, bd=db, ebe=bc, cd=dc, ce=ec, ede=d-1 >
Subgroups: 664 in 186 conjugacy classes, 63 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C8, C2×C4, D4, C23, C23, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C24, C3⋊C8, C24, D12, C2×C12, C22×S3, C22×S3, C22×C6, C4.D4, C2×M4(2), C2×M4(2), C22×D4, C2×C3⋊C8, C4.Dic3, C4.Dic3, C2×C24, C3×M4(2), C3×M4(2), C2×D12, C2×D12, C22×C12, S3×C23, C2×C4.D4, C12.46D4, C2×C4.Dic3, C6×M4(2), C22×D12, C2×C12.46D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, D12, C3⋊D4, C22×S3, C4.D4, C2×C22⋊C4, D6⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C2×C4.D4, C12.46D4, C2×D6⋊C4, C2×C12.46D4
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 31)(18 32)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)(33 48)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 16)(2 13)(3 10)(4 15)(5 12)(6 9)(7 14)(8 11)(17 31)(18 28)(19 25)(20 30)(21 27)(22 32)(23 29)(24 26)(33 44)(34 41)(35 46)(36 43)(37 48)(38 45)(39 42)(40 47)
(1 47 23)(2 48 24)(3 41 17)(4 42 18)(5 43 19)(6 44 20)(7 45 21)(8 46 22)(9 33 30)(10 34 31)(11 35 32)(12 36 25)(13 37 26)(14 38 27)(15 39 28)(16 40 29)
(1 10)(2 8)(3 16)(4 6)(5 14)(7 12)(9 15)(11 13)(17 40)(18 44)(19 38)(20 42)(21 36)(22 48)(23 34)(24 46)(25 45)(26 35)(27 43)(28 33)(29 41)(30 39)(31 47)(32 37)
G:=sub<Sym(48)| (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,16)(2,13)(3,10)(4,15)(5,12)(6,9)(7,14)(8,11)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)(33,44)(34,41)(35,46)(36,43)(37,48)(38,45)(39,42)(40,47), (1,47,23)(2,48,24)(3,41,17)(4,42,18)(5,43,19)(6,44,20)(7,45,21)(8,46,22)(9,33,30)(10,34,31)(11,35,32)(12,36,25)(13,37,26)(14,38,27)(15,39,28)(16,40,29), (1,10)(2,8)(3,16)(4,6)(5,14)(7,12)(9,15)(11,13)(17,40)(18,44)(19,38)(20,42)(21,36)(22,48)(23,34)(24,46)(25,45)(26,35)(27,43)(28,33)(29,41)(30,39)(31,47)(32,37)>;
G:=Group( (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,31)(18,32)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,16)(2,13)(3,10)(4,15)(5,12)(6,9)(7,14)(8,11)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26)(33,44)(34,41)(35,46)(36,43)(37,48)(38,45)(39,42)(40,47), (1,47,23)(2,48,24)(3,41,17)(4,42,18)(5,43,19)(6,44,20)(7,45,21)(8,46,22)(9,33,30)(10,34,31)(11,35,32)(12,36,25)(13,37,26)(14,38,27)(15,39,28)(16,40,29), (1,10)(2,8)(3,16)(4,6)(5,14)(7,12)(9,15)(11,13)(17,40)(18,44)(19,38)(20,42)(21,36)(22,48)(23,34)(24,46)(25,45)(26,35)(27,43)(28,33)(29,41)(30,39)(31,47)(32,37) );
G=PermutationGroup([[(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,31),(18,32),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30),(33,48),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,16),(2,13),(3,10),(4,15),(5,12),(6,9),(7,14),(8,11),(17,31),(18,28),(19,25),(20,30),(21,27),(22,32),(23,29),(24,26),(33,44),(34,41),(35,46),(36,43),(37,48),(38,45),(39,42),(40,47)], [(1,47,23),(2,48,24),(3,41,17),(4,42,18),(5,43,19),(6,44,20),(7,45,21),(8,46,22),(9,33,30),(10,34,31),(11,35,32),(12,36,25),(13,37,26),(14,38,27),(15,39,28),(16,40,29)], [(1,10),(2,8),(3,16),(4,6),(5,14),(7,12),(9,15),(11,13),(17,40),(18,44),(19,38),(20,42),(21,36),(22,48),(23,34),(24,46),(25,45),(26,35),(27,43),(28,33),(29,41),(30,39),(31,47),(32,37)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 12E | 12F | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | S3 | D4 | D6 | D6 | C4×S3 | D12 | C3⋊D4 | C4×S3 | C4.D4 | C12.46D4 |
kernel | C2×C12.46D4 | C12.46D4 | C2×C4.Dic3 | C6×M4(2) | C22×D12 | C2×D12 | S3×C23 | C2×M4(2) | C2×C12 | M4(2) | C22×C4 | C2×C4 | C2×C4 | C2×C4 | C23 | C6 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 4 | 4 | 1 | 4 | 2 | 1 | 2 | 4 | 4 | 2 | 2 | 4 |
Matrix representation of C2×C12.46D4 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 66 | 14 | 0 | 0 |
0 | 0 | 59 | 7 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 1 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 59 | 7 | 0 | 0 |
0 | 0 | 66 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 59 | 7 |
0 | 0 | 0 | 0 | 66 | 14 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,66,59,0,0,0,0,14,7,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,59,66,0,0,0,0,7,14,0,0,0,0,0,0,59,66,0,0,0,0,7,14] >;
C2×C12.46D4 in GAP, Magma, Sage, TeX
C_2\times C_{12}._{46}D_4
% in TeX
G:=Group("C2xC12.46D4");
// GroupNames label
G:=SmallGroup(192,689);
// by ID
G=gap.SmallGroup(192,689);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,422,58,1123,136,438,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^5,b*d=d*b,e*b*e=b*c,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations