Copied to
clipboard

G = C6×C4.D4order 192 = 26·3

Direct product of C6 and C4.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C6×C4.D4, C24.3C12, C4.48(C6×D4), (C2×D4).6C12, (C6×D4).18C4, (C23×C6).2C4, C12.455(C2×D4), (C2×C12).515D4, M4(2)⋊8(C2×C6), (C2×M4(2))⋊8C6, C23.4(C2×C12), (C22×D4).6C6, (C6×M4(2))⋊26C2, C12.78(C22⋊C4), (C2×C12).606C23, (C6×D4).284C22, C22.8(C22×C12), (C3×M4(2))⋊37C22, (C22×C12).407C22, (D4×C2×C6).17C2, (C2×C4).21(C3×D4), (C2×C4).19(C2×C12), (C2×D4).42(C2×C6), C4.10(C3×C22⋊C4), C2.14(C6×C22⋊C4), (C2×C4).1(C22×C6), (C2×C12).192(C2×C4), C6.102(C2×C22⋊C4), (C22×C4).31(C2×C6), (C22×C6).11(C2×C4), (C2×C6).161(C22×C4), C22.18(C3×C22⋊C4), (C2×C6).136(C22⋊C4), SmallGroup(192,844)

Series: Derived Chief Lower central Upper central

C1C22 — C6×C4.D4
C1C2C4C2×C4C2×C12C3×M4(2)C3×C4.D4 — C6×C4.D4
C1C2C22 — C6×C4.D4
C1C2×C6C22×C12 — C6×C4.D4

Generators and relations for C6×C4.D4
 G = < a,b,c,d | a6=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

Subgroups: 370 in 186 conjugacy classes, 82 normal (22 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, D4, C23, C23, C23, C12, C2×C6, C2×C6, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×D4, C24, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C4.D4, C2×M4(2), C22×D4, C2×C24, C3×M4(2), C3×M4(2), C22×C12, C6×D4, C6×D4, C23×C6, C2×C4.D4, C3×C4.D4, C6×M4(2), D4×C2×C6, C6×C4.D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×C12, C3×D4, C22×C6, C4.D4, C2×C22⋊C4, C3×C22⋊C4, C22×C12, C6×D4, C2×C4.D4, C3×C4.D4, C6×C22⋊C4, C6×C4.D4

Smallest permutation representation of C6×C4.D4
On 48 points
Generators in S48
(1 10 39 41 19 27)(2 11 40 42 20 28)(3 12 33 43 21 29)(4 13 34 44 22 30)(5 14 35 45 23 31)(6 15 36 46 24 32)(7 16 37 47 17 25)(8 9 38 48 18 26)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 48 3 46 5 44 7 42)(2 41 8 43 6 45 4 47)(9 21 15 23 13 17 11 19)(10 18 12 24 14 22 16 20)(25 40 27 38 29 36 31 34)(26 33 32 35 30 37 28 39)

G:=sub<Sym(48)| (1,10,39,41,19,27)(2,11,40,42,20,28)(3,12,33,43,21,29)(4,13,34,44,22,30)(5,14,35,45,23,31)(6,15,36,46,24,32)(7,16,37,47,17,25)(8,9,38,48,18,26), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,48,3,46,5,44,7,42)(2,41,8,43,6,45,4,47)(9,21,15,23,13,17,11,19)(10,18,12,24,14,22,16,20)(25,40,27,38,29,36,31,34)(26,33,32,35,30,37,28,39)>;

G:=Group( (1,10,39,41,19,27)(2,11,40,42,20,28)(3,12,33,43,21,29)(4,13,34,44,22,30)(5,14,35,45,23,31)(6,15,36,46,24,32)(7,16,37,47,17,25)(8,9,38,48,18,26), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,48,3,46,5,44,7,42)(2,41,8,43,6,45,4,47)(9,21,15,23,13,17,11,19)(10,18,12,24,14,22,16,20)(25,40,27,38,29,36,31,34)(26,33,32,35,30,37,28,39) );

G=PermutationGroup([[(1,10,39,41,19,27),(2,11,40,42,20,28),(3,12,33,43,21,29),(4,13,34,44,22,30),(5,14,35,45,23,31),(6,15,36,46,24,32),(7,16,37,47,17,25),(8,9,38,48,18,26)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,48,3,46,5,44,7,42),(2,41,8,43,6,45,4,47),(9,21,15,23,13,17,11,19),(10,18,12,24,14,22,16,20),(25,40,27,38,29,36,31,34),(26,33,32,35,30,37,28,39)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B4A4B4C4D6A···6F6G6H6I6J6K···6R8A···8H12A···12H24A···24P
order12222222223344446···666666···68···812···1224···24
size11112244441122221···122224···44···42···24···4

66 irreducible representations

dim1111111111112244
type++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12D4C3×D4C4.D4C3×C4.D4
kernelC6×C4.D4C3×C4.D4C6×M4(2)D4×C2×C6C2×C4.D4C6×D4C23×C6C4.D4C2×M4(2)C22×D4C2×D4C24C2×C12C2×C4C6C2
# reps1421244842884824

Matrix representation of C6×C4.D4 in GL6(𝔽73)

6500000
0650000
008000
000800
000080
000008
,
100000
010000
00012727
00720460
00007272
000021
,
72720000
210000
0004600
0002710
00721027
00071046
,
110000
0720000
004607272
0027001
00172046
00710027

G:=sub<GL(6,GF(73))| [65,0,0,0,0,0,0,65,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,27,46,72,2,0,0,27,0,72,1],[72,2,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0,0,0,46,27,1,71,0,0,0,1,0,0,0,0,0,0,27,46],[1,0,0,0,0,0,1,72,0,0,0,0,0,0,46,27,1,71,0,0,0,0,72,0,0,0,72,0,0,0,0,0,72,1,46,27] >;

C6×C4.D4 in GAP, Magma, Sage, TeX

C_6\times C_4.D_4
% in TeX

G:=Group("C6xC4.D4");
// GroupNames label

G:=SmallGroup(192,844);
// by ID

G=gap.SmallGroup(192,844);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,4204,3036,124]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

׿
×
𝔽