direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D106, C2×D53, C106⋊C2, C53⋊C22, sometimes denoted D212 or Dih106 or Dih212, SmallGroup(212,4)
Series: Derived ►Chief ►Lower central ►Upper central
C53 — D106 |
Generators and relations for D106
G = < a,b | a106=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106)
(1 106)(2 105)(3 104)(4 103)(5 102)(6 101)(7 100)(8 99)(9 98)(10 97)(11 96)(12 95)(13 94)(14 93)(15 92)(16 91)(17 90)(18 89)(19 88)(20 87)(21 86)(22 85)(23 84)(24 83)(25 82)(26 81)(27 80)(28 79)(29 78)(30 77)(31 76)(32 75)(33 74)(34 73)(35 72)(36 71)(37 70)(38 69)(39 68)(40 67)(41 66)(42 65)(43 64)(44 63)(45 62)(46 61)(47 60)(48 59)(49 58)(50 57)(51 56)(52 55)(53 54)
G:=sub<Sym(106)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106), (1,106)(2,105)(3,104)(4,103)(5,102)(6,101)(7,100)(8,99)(9,98)(10,97)(11,96)(12,95)(13,94)(14,93)(15,92)(16,91)(17,90)(18,89)(19,88)(20,87)(21,86)(22,85)(23,84)(24,83)(25,82)(26,81)(27,80)(28,79)(29,78)(30,77)(31,76)(32,75)(33,74)(34,73)(35,72)(36,71)(37,70)(38,69)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106), (1,106)(2,105)(3,104)(4,103)(5,102)(6,101)(7,100)(8,99)(9,98)(10,97)(11,96)(12,95)(13,94)(14,93)(15,92)(16,91)(17,90)(18,89)(19,88)(20,87)(21,86)(22,85)(23,84)(24,83)(25,82)(26,81)(27,80)(28,79)(29,78)(30,77)(31,76)(32,75)(33,74)(34,73)(35,72)(36,71)(37,70)(38,69)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106)], [(1,106),(2,105),(3,104),(4,103),(5,102),(6,101),(7,100),(8,99),(9,98),(10,97),(11,96),(12,95),(13,94),(14,93),(15,92),(16,91),(17,90),(18,89),(19,88),(20,87),(21,86),(22,85),(23,84),(24,83),(25,82),(26,81),(27,80),(28,79),(29,78),(30,77),(31,76),(32,75),(33,74),(34,73),(35,72),(36,71),(37,70),(38,69),(39,68),(40,67),(41,66),(42,65),(43,64),(44,63),(45,62),(46,61),(47,60),(48,59),(49,58),(50,57),(51,56),(52,55),(53,54)]])
D106 is a maximal subgroup of
D212 C53⋊D4
D106 is a maximal quotient of Dic106 D212 C53⋊D4
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 53A | ··· | 53Z | 106A | ··· | 106Z |
order | 1 | 2 | 2 | 2 | 53 | ··· | 53 | 106 | ··· | 106 |
size | 1 | 1 | 53 | 53 | 2 | ··· | 2 | 2 | ··· | 2 |
56 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | D53 | D106 |
kernel | D106 | D53 | C106 | C2 | C1 |
# reps | 1 | 2 | 1 | 26 | 26 |
Matrix representation of D106 ►in GL2(𝔽107) generated by
6 | 34 |
50 | 16 |
56 | 21 |
80 | 51 |
G:=sub<GL(2,GF(107))| [6,50,34,16],[56,80,21,51] >;
D106 in GAP, Magma, Sage, TeX
D_{106}
% in TeX
G:=Group("D106");
// GroupNames label
G:=SmallGroup(212,4);
// by ID
G=gap.SmallGroup(212,4);
# by ID
G:=PCGroup([3,-2,-2,-53,1874]);
// Polycyclic
G:=Group<a,b|a^106=b^2=1,b*a*b=a^-1>;
// generators/relations
Export