Extensions 1→N→G→Q→1 with N=C32 and Q=C2×A4

Direct product G=N×Q with N=C32 and Q=C2×A4

Semidirect products G=N:Q with N=C32 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C32⋊(C2×A4) = C62⋊C6φ: C2×A4/C22C6 ⊆ Aut C32186+C3^2:(C2xA4)216,99
C322(C2×A4) = C2×C32⋊A4φ: C2×A4/C23C3 ⊆ Aut C32183C3^2:2(C2xA4)216,107
C323(C2×A4) = C3×S3×A4φ: C2×A4/A4C2 ⊆ Aut C32246C3^2:3(C2xA4)216,166
C324(C2×A4) = A4×C3⋊S3φ: C2×A4/A4C2 ⊆ Aut C3236C3^2:4(C2xA4)216,167

Non-split extensions G=N.Q with N=C32 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C32.(C2×A4) = C2×C32.A4φ: C2×A4/C23C3 ⊆ Aut C32183C3^2.(C2xA4)216,106
C32.2(C2×A4) = S3×C3.A4φ: C2×A4/A4C2 ⊆ Aut C32366C3^2.2(C2xA4)216,98
C32.3(C2×A4) = C6×C3.A4central extension (φ=1)54C3^2.3(C2xA4)216,105