Copied to
clipboard

G = C6×C3.A4order 216 = 23·33

Direct product of C6 and C3.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C6×C3.A4, C62.6C6, (C22×C6)⋊C9, (C2×C6)⋊2C18, C3.2(C6×A4), C6.5(C3×A4), (C3×C6).5A4, C232(C3×C9), C222(C3×C18), C32.3(C2×A4), (C2×C62).1C3, (C22×C6).3C32, (C2×C6).3(C3×C6), SmallGroup(216,105)

Series: Derived Chief Lower central Upper central

C1C22 — C6×C3.A4
C1C22C2×C6C62C3×C3.A4 — C6×C3.A4
C22 — C6×C3.A4
C1C3×C6

Generators and relations for C6×C3.A4
 G = < a,b,c,d,e | a6=b3=c2=d2=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 136 in 64 conjugacy classes, 32 normal (14 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C6, C23, C9, C32, C2×C6, C2×C6, C2×C6, C18, C3×C6, C3×C6, C22×C6, C22×C6, C3×C9, C3.A4, C62, C62, C3×C18, C2×C3.A4, C2×C62, C3×C3.A4, C6×C3.A4
Quotients: C1, C2, C3, C6, C9, C32, A4, C18, C3×C6, C2×A4, C3×C9, C3.A4, C3×A4, C3×C18, C2×C3.A4, C6×A4, C3×C3.A4, C6×C3.A4

Smallest permutation representation of C6×C3.A4
On 54 points
Generators in S54
(1 33 24 52 15 41)(2 34 25 53 16 42)(3 35 26 54 17 43)(4 36 27 46 18 44)(5 28 19 47 10 45)(6 29 20 48 11 37)(7 30 21 49 12 38)(8 31 22 50 13 39)(9 32 23 51 14 40)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(2 53)(3 54)(5 47)(6 48)(8 50)(9 51)(10 28)(11 29)(13 31)(14 32)(16 34)(17 35)(19 45)(20 37)(22 39)(23 40)(25 42)(26 43)
(1 52)(3 54)(4 46)(6 48)(7 49)(9 51)(11 29)(12 30)(14 32)(15 33)(17 35)(18 36)(20 37)(21 38)(23 40)(24 41)(26 43)(27 44)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,33,24,52,15,41)(2,34,25,53,16,42)(3,35,26,54,17,43)(4,36,27,46,18,44)(5,28,19,47,10,45)(6,29,20,48,11,37)(7,30,21,49,12,38)(8,31,22,50,13,39)(9,32,23,51,14,40), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (2,53)(3,54)(5,47)(6,48)(8,50)(9,51)(10,28)(11,29)(13,31)(14,32)(16,34)(17,35)(19,45)(20,37)(22,39)(23,40)(25,42)(26,43), (1,52)(3,54)(4,46)(6,48)(7,49)(9,51)(11,29)(12,30)(14,32)(15,33)(17,35)(18,36)(20,37)(21,38)(23,40)(24,41)(26,43)(27,44), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,33,24,52,15,41)(2,34,25,53,16,42)(3,35,26,54,17,43)(4,36,27,46,18,44)(5,28,19,47,10,45)(6,29,20,48,11,37)(7,30,21,49,12,38)(8,31,22,50,13,39)(9,32,23,51,14,40), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (2,53)(3,54)(5,47)(6,48)(8,50)(9,51)(10,28)(11,29)(13,31)(14,32)(16,34)(17,35)(19,45)(20,37)(22,39)(23,40)(25,42)(26,43), (1,52)(3,54)(4,46)(6,48)(7,49)(9,51)(11,29)(12,30)(14,32)(15,33)(17,35)(18,36)(20,37)(21,38)(23,40)(24,41)(26,43)(27,44), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,33,24,52,15,41),(2,34,25,53,16,42),(3,35,26,54,17,43),(4,36,27,46,18,44),(5,28,19,47,10,45),(6,29,20,48,11,37),(7,30,21,49,12,38),(8,31,22,50,13,39),(9,32,23,51,14,40)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(2,53),(3,54),(5,47),(6,48),(8,50),(9,51),(10,28),(11,29),(13,31),(14,32),(16,34),(17,35),(19,45),(20,37),(22,39),(23,40),(25,42),(26,43)], [(1,52),(3,54),(4,46),(6,48),(7,49),(9,51),(11,29),(12,30),(14,32),(15,33),(17,35),(18,36),(20,37),(21,38),(23,40),(24,41),(26,43),(27,44)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

C6×C3.A4 is a maximal subgroup of   C62.10Dic3

72 conjugacy classes

class 1 2A2B2C3A···3H6A···6H6I···6X9A···9R18A···18R
order12223···36···66···69···918···18
size11331···11···13···34···44···4

72 irreducible representations

dim11111111333333
type++++
imageC1C2C3C3C6C6C9C18A4C2×A4C3.A4C3×A4C2×C3.A4C6×A4
kernelC6×C3.A4C3×C3.A4C2×C3.A4C2×C62C3.A4C62C22×C6C2×C6C3×C6C32C6C6C3C3
# reps1162621818116262

Matrix representation of C6×C3.A4 in GL5(𝔽19)

120000
018000
001800
000180
000018
,
10000
07000
00100
00010
00001
,
10000
01000
00100
000180
000018
,
10000
01000
001800
000180
00001
,
10000
09000
00010
00001
00100

G:=sub<GL(5,GF(19))| [12,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,7,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,1],[1,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0] >;

C6×C3.A4 in GAP, Magma, Sage, TeX

C_6\times C_3.A_4
% in TeX

G:=Group("C6xC3.A4");
// GroupNames label

G:=SmallGroup(216,105);
// by ID

G=gap.SmallGroup(216,105);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,115,1630,2927]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^3=c^2=d^2=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽