Extensions 1→N→G→Q→1 with N=C6 and Q=C62

Direct product G=N×Q with N=C6 and Q=C62

Semidirect products G=N:Q with N=C6 and Q=C62
extensionφ:Q→Aut NdρLabelID
C6⋊C62 = S3×C62φ: C62/C3×C6C2 ⊆ Aut C672C6:C6^2216,174

Non-split extensions G=N.Q with N=C6 and Q=C62
extensionφ:Q→Aut NdρLabelID
C6.1C62 = C32×Dic6φ: C62/C3×C6C2 ⊆ Aut C672C6.1C6^2216,135
C6.2C62 = S3×C3×C12φ: C62/C3×C6C2 ⊆ Aut C672C6.2C6^2216,136
C6.3C62 = C32×D12φ: C62/C3×C6C2 ⊆ Aut C672C6.3C6^2216,137
C6.4C62 = Dic3×C3×C6φ: C62/C3×C6C2 ⊆ Aut C672C6.4C6^2216,138
C6.5C62 = C32×C3⋊D4φ: C62/C3×C6C2 ⊆ Aut C636C6.5C6^2216,139
C6.6C62 = C2×C4×He3central extension (φ=1)72C6.6C6^2216,74
C6.7C62 = C2×C4×3- 1+2central extension (φ=1)72C6.7C6^2216,75
C6.8C62 = D4×C3×C9central extension (φ=1)108C6.8C6^2216,76
C6.9C62 = Q8×C3×C9central extension (φ=1)216C6.9C6^2216,79
C6.10C62 = C23×He3central extension (φ=1)72C6.10C6^2216,115
C6.11C62 = C23×3- 1+2central extension (φ=1)72C6.11C6^2216,116
C6.12C62 = D4×C33central extension (φ=1)108C6.12C6^2216,151
C6.13C62 = Q8×C33central extension (φ=1)216C6.13C6^2216,152
C6.14C62 = D4×He3central stem extension (φ=1)366C6.14C6^2216,77
C6.15C62 = D4×3- 1+2central stem extension (φ=1)366C6.15C6^2216,78
C6.16C62 = Q8×He3central stem extension (φ=1)726C6.16C6^2216,80
C6.17C62 = Q8×3- 1+2central stem extension (φ=1)726C6.17C6^2216,81