Copied to
clipboard

G = Dic3×C3×C6order 216 = 23·33

Direct product of C3×C6 and Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic3×C3×C6, C6.4C62, C62.17S3, C62.13C6, C6⋊(C3×C12), C32(C6×C12), (C3×C6)⋊4C12, C6.38(S3×C6), (C32×C6)⋊3C4, C3313(C2×C4), (C3×C6).70D6, C329(C2×C12), (C3×C62).1C2, C22.(S3×C32), (C32×C6).19C22, C2.2(S3×C3×C6), (C2×C6).9(C3×C6), (C2×C6).22(C3×S3), (C3×C6).27(C2×C6), SmallGroup(216,138)

Series: Derived Chief Lower central Upper central

C1C3 — Dic3×C3×C6
C1C3C6C3×C6C32×C6C32×Dic3 — Dic3×C3×C6
C3 — Dic3×C3×C6
C1C62

Generators and relations for Dic3×C3×C6
 G = < a,b,c,d | a3=b6=c6=1, d2=c3, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 212 in 136 conjugacy classes, 78 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, C32, C32, C32, Dic3, C12, C2×C6, C2×C6, C2×C6, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C33, C3×Dic3, C3×C12, C62, C62, C62, C32×C6, C32×C6, C6×Dic3, C6×C12, C32×Dic3, C3×C62, Dic3×C3×C6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C32, Dic3, C12, D6, C2×C6, C3×S3, C3×C6, C2×Dic3, C2×C12, C3×Dic3, C3×C12, S3×C6, C62, S3×C32, C6×Dic3, C6×C12, C32×Dic3, S3×C3×C6, Dic3×C3×C6

Smallest permutation representation of Dic3×C3×C6
On 72 points
Generators in S72
(1 63 43)(2 64 44)(3 65 45)(4 66 46)(5 61 47)(6 62 48)(7 17 33)(8 18 34)(9 13 35)(10 14 36)(11 15 31)(12 16 32)(19 70 29)(20 71 30)(21 72 25)(22 67 26)(23 68 27)(24 69 28)(37 51 60)(38 52 55)(39 53 56)(40 54 57)(41 49 58)(42 50 59)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 37 65 53 47 58)(2 38 66 54 48 59)(3 39 61 49 43 60)(4 40 62 50 44 55)(5 41 63 51 45 56)(6 42 64 52 46 57)(7 72 31 19 13 27)(8 67 32 20 14 28)(9 68 33 21 15 29)(10 69 34 22 16 30)(11 70 35 23 17 25)(12 71 36 24 18 26)
(1 24 53 12)(2 19 54 7)(3 20 49 8)(4 21 50 9)(5 22 51 10)(6 23 52 11)(13 66 72 59)(14 61 67 60)(15 62 68 55)(16 63 69 56)(17 64 70 57)(18 65 71 58)(25 42 35 46)(26 37 36 47)(27 38 31 48)(28 39 32 43)(29 40 33 44)(30 41 34 45)

G:=sub<Sym(72)| (1,63,43)(2,64,44)(3,65,45)(4,66,46)(5,61,47)(6,62,48)(7,17,33)(8,18,34)(9,13,35)(10,14,36)(11,15,31)(12,16,32)(19,70,29)(20,71,30)(21,72,25)(22,67,26)(23,68,27)(24,69,28)(37,51,60)(38,52,55)(39,53,56)(40,54,57)(41,49,58)(42,50,59), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,37,65,53,47,58)(2,38,66,54,48,59)(3,39,61,49,43,60)(4,40,62,50,44,55)(5,41,63,51,45,56)(6,42,64,52,46,57)(7,72,31,19,13,27)(8,67,32,20,14,28)(9,68,33,21,15,29)(10,69,34,22,16,30)(11,70,35,23,17,25)(12,71,36,24,18,26), (1,24,53,12)(2,19,54,7)(3,20,49,8)(4,21,50,9)(5,22,51,10)(6,23,52,11)(13,66,72,59)(14,61,67,60)(15,62,68,55)(16,63,69,56)(17,64,70,57)(18,65,71,58)(25,42,35,46)(26,37,36,47)(27,38,31,48)(28,39,32,43)(29,40,33,44)(30,41,34,45)>;

G:=Group( (1,63,43)(2,64,44)(3,65,45)(4,66,46)(5,61,47)(6,62,48)(7,17,33)(8,18,34)(9,13,35)(10,14,36)(11,15,31)(12,16,32)(19,70,29)(20,71,30)(21,72,25)(22,67,26)(23,68,27)(24,69,28)(37,51,60)(38,52,55)(39,53,56)(40,54,57)(41,49,58)(42,50,59), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,37,65,53,47,58)(2,38,66,54,48,59)(3,39,61,49,43,60)(4,40,62,50,44,55)(5,41,63,51,45,56)(6,42,64,52,46,57)(7,72,31,19,13,27)(8,67,32,20,14,28)(9,68,33,21,15,29)(10,69,34,22,16,30)(11,70,35,23,17,25)(12,71,36,24,18,26), (1,24,53,12)(2,19,54,7)(3,20,49,8)(4,21,50,9)(5,22,51,10)(6,23,52,11)(13,66,72,59)(14,61,67,60)(15,62,68,55)(16,63,69,56)(17,64,70,57)(18,65,71,58)(25,42,35,46)(26,37,36,47)(27,38,31,48)(28,39,32,43)(29,40,33,44)(30,41,34,45) );

G=PermutationGroup([[(1,63,43),(2,64,44),(3,65,45),(4,66,46),(5,61,47),(6,62,48),(7,17,33),(8,18,34),(9,13,35),(10,14,36),(11,15,31),(12,16,32),(19,70,29),(20,71,30),(21,72,25),(22,67,26),(23,68,27),(24,69,28),(37,51,60),(38,52,55),(39,53,56),(40,54,57),(41,49,58),(42,50,59)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,37,65,53,47,58),(2,38,66,54,48,59),(3,39,61,49,43,60),(4,40,62,50,44,55),(5,41,63,51,45,56),(6,42,64,52,46,57),(7,72,31,19,13,27),(8,67,32,20,14,28),(9,68,33,21,15,29),(10,69,34,22,16,30),(11,70,35,23,17,25),(12,71,36,24,18,26)], [(1,24,53,12),(2,19,54,7),(3,20,49,8),(4,21,50,9),(5,22,51,10),(6,23,52,11),(13,66,72,59),(14,61,67,60),(15,62,68,55),(16,63,69,56),(17,64,70,57),(18,65,71,58),(25,42,35,46),(26,37,36,47),(27,38,31,48),(28,39,32,43),(29,40,33,44),(30,41,34,45)]])

Dic3×C3×C6 is a maximal subgroup of   C62.78D6  C62.79D6  C62.80D6  C62.81D6  C62.82D6  C62.93D6  S3×C6×C12

108 conjugacy classes

class 1 2A2B2C3A···3H3I···3Q4A4B4C4D6A···6X6Y···6AY12A···12AF
order12223···33···344446···66···612···12
size11111···12···233331···12···23···3

108 irreducible representations

dim11111111222222
type++++-+
imageC1C2C2C3C4C6C6C12S3Dic3D6C3×S3C3×Dic3S3×C6
kernelDic3×C3×C6C32×Dic3C3×C62C6×Dic3C32×C6C3×Dic3C62C3×C6C62C3×C6C3×C6C2×C6C6C6
# reps12184168321218168

Matrix representation of Dic3×C3×C6 in GL3(𝔽13) generated by

900
090
009
,
1200
0100
0010
,
1200
093
003
,
500
0120
021
G:=sub<GL(3,GF(13))| [9,0,0,0,9,0,0,0,9],[12,0,0,0,10,0,0,0,10],[12,0,0,0,9,0,0,3,3],[5,0,0,0,12,2,0,0,1] >;

Dic3×C3×C6 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times C_3\times C_6
% in TeX

G:=Group("Dic3xC3xC6");
// GroupNames label

G:=SmallGroup(216,138);
// by ID

G=gap.SmallGroup(216,138);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-2,-3,216,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^6=c^6=1,d^2=c^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽