d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3xS3xDic3 | 24 | 4 | C3xS3xDic3 | 216,119 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C3:1(S3xDic3) = Dic3xC3:S3 | φ: S3xDic3/C3xDic3 → C2 ⊆ Aut C3 | 72 | C3:1(S3xDic3) | 216,125 | |
C3:2(S3xDic3) = C33:9(C2xC4) | φ: S3xDic3/C3:Dic3 → C2 ⊆ Aut C3 | 24 | 4 | C3:2(S3xDic3) | 216,131 |
C3:3(S3xDic3) = S3xC3:Dic3 | φ: S3xDic3/S3xC6 → C2 ⊆ Aut C3 | 72 | C3:3(S3xDic3) | 216,124 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C3.1(S3xDic3) = Dic3xD9 | φ: S3xDic3/C3xDic3 → C2 ⊆ Aut C3 | 72 | 4- | C3.1(S3xDic3) | 216,27 |
C3.2(S3xDic3) = C6.S32 | φ: S3xDic3/C3:Dic3 → C2 ⊆ Aut C3 | 36 | 6 | C3.2(S3xDic3) | 216,34 |
C3.3(S3xDic3) = S3xDic9 | φ: S3xDic3/S3xC6 → C2 ⊆ Aut C3 | 72 | 4- | C3.3(S3xDic3) | 216,30 |