Extensions 1→N→G→Q→1 with N=C3 and Q=S3xDic3

Direct product G=NxQ with N=C3 and Q=S3xDic3
dρLabelID
C3xS3xDic3244C3xS3xDic3216,119

Semidirect products G=N:Q with N=C3 and Q=S3xDic3
extensionφ:Q→Aut NdρLabelID
C3:1(S3xDic3) = Dic3xC3:S3φ: S3xDic3/C3xDic3C2 ⊆ Aut C372C3:1(S3xDic3)216,125
C3:2(S3xDic3) = C33:9(C2xC4)φ: S3xDic3/C3:Dic3C2 ⊆ Aut C3244C3:2(S3xDic3)216,131
C3:3(S3xDic3) = S3xC3:Dic3φ: S3xDic3/S3xC6C2 ⊆ Aut C372C3:3(S3xDic3)216,124

Non-split extensions G=N.Q with N=C3 and Q=S3xDic3
extensionφ:Q→Aut NdρLabelID
C3.1(S3xDic3) = Dic3xD9φ: S3xDic3/C3xDic3C2 ⊆ Aut C3724-C3.1(S3xDic3)216,27
C3.2(S3xDic3) = C6.S32φ: S3xDic3/C3:Dic3C2 ⊆ Aut C3366C3.2(S3xDic3)216,34
C3.3(S3xDic3) = S3xDic9φ: S3xDic3/S3xC6C2 ⊆ Aut C3724-C3.3(S3xDic3)216,30

׿
x
:
Z
F
o
wr
Q
<