Extensions 1→N→G→Q→1 with N=C3 and Q=C3×Dic6

Direct product G=N×Q with N=C3 and Q=C3×Dic6
dρLabelID
C32×Dic672C3^2xDic6216,135

Semidirect products G=N:Q with N=C3 and Q=C3×Dic6
extensionφ:Q→Aut NdρLabelID
C31(C3×Dic6) = C3×C322Q8φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C3244C3:1(C3xDic6)216,123
C32(C3×Dic6) = C3×C324Q8φ: C3×Dic6/C3×C12C2 ⊆ Aut C372C3:2(C3xDic6)216,140

Non-split extensions G=N.Q with N=C3 and Q=C3×Dic6
extensionφ:Q→Aut NdρLabelID
C3.1(C3×Dic6) = C3×Dic18φ: C3×Dic6/C3×C12C2 ⊆ Aut C3722C3.1(C3xDic6)216,43
C3.2(C3×Dic6) = He33Q8φ: C3×Dic6/C3×C12C2 ⊆ Aut C3726-C3.2(C3xDic6)216,49
C3.3(C3×Dic6) = C36.C6φ: C3×Dic6/C3×C12C2 ⊆ Aut C3726-C3.3(C3xDic6)216,52
C3.4(C3×Dic6) = C9×Dic6central extension (φ=1)722C3.4(C3xDic6)216,44

׿
×
𝔽