direct product, metacyclic, supersoluble, monomial
Aliases: C9×Dic6, C36.7S3, C12.1C18, C18.19D6, Dic3.C18, C3⋊(Q8×C9), C4.(S3×C9), (C3×C9)⋊2Q8, C6.29(S3×C6), C2.3(S3×C18), C6.1(C2×C18), (C3×C36).6C2, (C3×Dic6).C3, C12.15(C3×S3), (C3×C12).10C6, C3.4(C3×Dic6), C32.2(C3×Q8), (C3×C18).8C22, (C3×Dic3).2C6, (C9×Dic3).2C2, (C3×C6).18(C2×C6), SmallGroup(216,44)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C9×Dic6
G = < a,b,c | a9=b12=1, c2=b6, ab=ba, ac=ca, cbc-1=b-1 >
(1 22 70 9 18 66 5 14 62)(2 23 71 10 19 67 6 15 63)(3 24 72 11 20 68 7 16 64)(4 13 61 12 21 69 8 17 65)(25 56 38 29 60 42 33 52 46)(26 57 39 30 49 43 34 53 47)(27 58 40 31 50 44 35 54 48)(28 59 41 32 51 45 36 55 37)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 56 7 50)(2 55 8 49)(3 54 9 60)(4 53 10 59)(5 52 11 58)(6 51 12 57)(13 47 19 41)(14 46 20 40)(15 45 21 39)(16 44 22 38)(17 43 23 37)(18 42 24 48)(25 68 31 62)(26 67 32 61)(27 66 33 72)(28 65 34 71)(29 64 35 70)(30 63 36 69)
G:=sub<Sym(72)| (1,22,70,9,18,66,5,14,62)(2,23,71,10,19,67,6,15,63)(3,24,72,11,20,68,7,16,64)(4,13,61,12,21,69,8,17,65)(25,56,38,29,60,42,33,52,46)(26,57,39,30,49,43,34,53,47)(27,58,40,31,50,44,35,54,48)(28,59,41,32,51,45,36,55,37), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,56,7,50)(2,55,8,49)(3,54,9,60)(4,53,10,59)(5,52,11,58)(6,51,12,57)(13,47,19,41)(14,46,20,40)(15,45,21,39)(16,44,22,38)(17,43,23,37)(18,42,24,48)(25,68,31,62)(26,67,32,61)(27,66,33,72)(28,65,34,71)(29,64,35,70)(30,63,36,69)>;
G:=Group( (1,22,70,9,18,66,5,14,62)(2,23,71,10,19,67,6,15,63)(3,24,72,11,20,68,7,16,64)(4,13,61,12,21,69,8,17,65)(25,56,38,29,60,42,33,52,46)(26,57,39,30,49,43,34,53,47)(27,58,40,31,50,44,35,54,48)(28,59,41,32,51,45,36,55,37), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,56,7,50)(2,55,8,49)(3,54,9,60)(4,53,10,59)(5,52,11,58)(6,51,12,57)(13,47,19,41)(14,46,20,40)(15,45,21,39)(16,44,22,38)(17,43,23,37)(18,42,24,48)(25,68,31,62)(26,67,32,61)(27,66,33,72)(28,65,34,71)(29,64,35,70)(30,63,36,69) );
G=PermutationGroup([[(1,22,70,9,18,66,5,14,62),(2,23,71,10,19,67,6,15,63),(3,24,72,11,20,68,7,16,64),(4,13,61,12,21,69,8,17,65),(25,56,38,29,60,42,33,52,46),(26,57,39,30,49,43,34,53,47),(27,58,40,31,50,44,35,54,48),(28,59,41,32,51,45,36,55,37)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,56,7,50),(2,55,8,49),(3,54,9,60),(4,53,10,59),(5,52,11,58),(6,51,12,57),(13,47,19,41),(14,46,20,40),(15,45,21,39),(16,44,22,38),(17,43,23,37),(18,42,24,48),(25,68,31,62),(26,67,32,61),(27,66,33,72),(28,65,34,71),(29,64,35,70),(30,63,36,69)]])
C9×Dic6 is a maximal subgroup of
Dic6⋊D9 C18.D12 C12.D18 C9⋊Dic12 D18.D6 Dic6⋊5D9 Dic18⋊S3 S3×Q8×C9
81 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 9A | ··· | 9F | 9G | ··· | 9L | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 18A | ··· | 18F | 18G | ··· | 18L | 36A | ··· | 36R | 36S | ··· | 36AD |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 | 36 | ··· | 36 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 1 | 1 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 6 | 6 | 6 | 6 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 6 | ··· | 6 |
81 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | ||||||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | C9 | C18 | C18 | S3 | Q8 | D6 | C3×S3 | Dic6 | C3×Q8 | S3×C6 | S3×C9 | Q8×C9 | C3×Dic6 | S3×C18 | C9×Dic6 |
kernel | C9×Dic6 | C9×Dic3 | C3×C36 | C3×Dic6 | C3×Dic3 | C3×C12 | Dic6 | Dic3 | C12 | C36 | C3×C9 | C18 | C12 | C9 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 6 | 12 | 6 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 4 | 6 | 12 |
Matrix representation of C9×Dic6 ►in GL2(𝔽37) generated by
16 | 0 |
0 | 16 |
14 | 0 |
19 | 8 |
27 | 9 |
34 | 10 |
G:=sub<GL(2,GF(37))| [16,0,0,16],[14,19,0,8],[27,34,9,10] >;
C9×Dic6 in GAP, Magma, Sage, TeX
C_9\times {\rm Dic}_6
% in TeX
G:=Group("C9xDic6");
// GroupNames label
G:=SmallGroup(216,44);
// by ID
G=gap.SmallGroup(216,44);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,169,79,122,5189]);
// Polycyclic
G:=Group<a,b,c|a^9=b^12=1,c^2=b^6,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export