Copied to
clipboard

G = C9×Dic6order 216 = 23·33

Direct product of C9 and Dic6

direct product, metacyclic, supersoluble, monomial

Aliases: C9×Dic6, C36.7S3, C12.1C18, C18.19D6, Dic3.C18, C3⋊(Q8×C9), C4.(S3×C9), (C3×C9)⋊2Q8, C6.29(S3×C6), C2.3(S3×C18), C6.1(C2×C18), (C3×C36).6C2, (C3×Dic6).C3, C12.15(C3×S3), (C3×C12).10C6, C3.4(C3×Dic6), C32.2(C3×Q8), (C3×C18).8C22, (C3×Dic3).2C6, (C9×Dic3).2C2, (C3×C6).18(C2×C6), SmallGroup(216,44)

Series: Derived Chief Lower central Upper central

C1C6 — C9×Dic6
C1C3C32C3×C6C3×C18C9×Dic3 — C9×Dic6
C3C6 — C9×Dic6
C1C18C36

Generators and relations for C9×Dic6
 G = < a,b,c | a9=b12=1, c2=b6, ab=ba, ac=ca, cbc-1=b-1 >

2C3
3C4
3C4
2C6
2C9
3Q8
2C12
3C12
3C12
2C18
3C3×Q8
2C36
3C36
3C36
3Q8×C9

Smallest permutation representation of C9×Dic6
On 72 points
Generators in S72
(1 44 25 9 40 33 5 48 29)(2 45 26 10 41 34 6 37 30)(3 46 27 11 42 35 7 38 31)(4 47 28 12 43 36 8 39 32)(13 59 61 17 51 65 21 55 69)(14 60 62 18 52 66 22 56 70)(15 49 63 19 53 67 23 57 71)(16 50 64 20 54 68 24 58 72)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 67 7 61)(2 66 8 72)(3 65 9 71)(4 64 10 70)(5 63 11 69)(6 62 12 68)(13 48 19 42)(14 47 20 41)(15 46 21 40)(16 45 22 39)(17 44 23 38)(18 43 24 37)(25 57 31 51)(26 56 32 50)(27 55 33 49)(28 54 34 60)(29 53 35 59)(30 52 36 58)

G:=sub<Sym(72)| (1,44,25,9,40,33,5,48,29)(2,45,26,10,41,34,6,37,30)(3,46,27,11,42,35,7,38,31)(4,47,28,12,43,36,8,39,32)(13,59,61,17,51,65,21,55,69)(14,60,62,18,52,66,22,56,70)(15,49,63,19,53,67,23,57,71)(16,50,64,20,54,68,24,58,72), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,67,7,61)(2,66,8,72)(3,65,9,71)(4,64,10,70)(5,63,11,69)(6,62,12,68)(13,48,19,42)(14,47,20,41)(15,46,21,40)(16,45,22,39)(17,44,23,38)(18,43,24,37)(25,57,31,51)(26,56,32,50)(27,55,33,49)(28,54,34,60)(29,53,35,59)(30,52,36,58)>;

G:=Group( (1,44,25,9,40,33,5,48,29)(2,45,26,10,41,34,6,37,30)(3,46,27,11,42,35,7,38,31)(4,47,28,12,43,36,8,39,32)(13,59,61,17,51,65,21,55,69)(14,60,62,18,52,66,22,56,70)(15,49,63,19,53,67,23,57,71)(16,50,64,20,54,68,24,58,72), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,67,7,61)(2,66,8,72)(3,65,9,71)(4,64,10,70)(5,63,11,69)(6,62,12,68)(13,48,19,42)(14,47,20,41)(15,46,21,40)(16,45,22,39)(17,44,23,38)(18,43,24,37)(25,57,31,51)(26,56,32,50)(27,55,33,49)(28,54,34,60)(29,53,35,59)(30,52,36,58) );

G=PermutationGroup([(1,44,25,9,40,33,5,48,29),(2,45,26,10,41,34,6,37,30),(3,46,27,11,42,35,7,38,31),(4,47,28,12,43,36,8,39,32),(13,59,61,17,51,65,21,55,69),(14,60,62,18,52,66,22,56,70),(15,49,63,19,53,67,23,57,71),(16,50,64,20,54,68,24,58,72)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,67,7,61),(2,66,8,72),(3,65,9,71),(4,64,10,70),(5,63,11,69),(6,62,12,68),(13,48,19,42),(14,47,20,41),(15,46,21,40),(16,45,22,39),(17,44,23,38),(18,43,24,37),(25,57,31,51),(26,56,32,50),(27,55,33,49),(28,54,34,60),(29,53,35,59),(30,52,36,58)])

C9×Dic6 is a maximal subgroup of
Dic6⋊D9  C18.D12  C12.D18  C9⋊Dic12  D18.D6  Dic65D9  Dic18⋊S3  S3×Q8×C9

81 conjugacy classes

class 1  2 3A3B3C3D3E4A4B4C6A6B6C6D6E9A···9F9G···9L12A···12H12I12J12K12L18A···18F18G···18L36A···36R36S···36AD
order1233333444666669···99···912···121212121218···1818···1836···3636···36
size1111222266112221···12···22···266661···12···22···26···6

81 irreducible representations

dim111111111222222222222
type++++-+-
imageC1C2C2C3C6C6C9C18C18S3Q8D6C3×S3Dic6C3×Q8S3×C6S3×C9Q8×C9C3×Dic6S3×C18C9×Dic6
kernelC9×Dic6C9×Dic3C3×C36C3×Dic6C3×Dic3C3×C12Dic6Dic3C12C36C3×C9C18C12C9C32C6C4C3C3C2C1
# reps12124261261112222664612

Matrix representation of C9×Dic6 in GL2(𝔽37) generated by

160
016
,
140
198
,
279
3410
G:=sub<GL(2,GF(37))| [16,0,0,16],[14,19,0,8],[27,34,9,10] >;

C9×Dic6 in GAP, Magma, Sage, TeX

C_9\times {\rm Dic}_6
% in TeX

G:=Group("C9xDic6");
// GroupNames label

G:=SmallGroup(216,44);
// by ID

G=gap.SmallGroup(216,44);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,169,79,122,5189]);
// Polycyclic

G:=Group<a,b,c|a^9=b^12=1,c^2=b^6,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C9×Dic6 in TeX

׿
×
𝔽