direct product, metacyclic, supersoluble, monomial
Aliases: C3×Dic18, C36.5C6, C12.7D9, C6.19D18, Dic9.2C6, C32.3Dic6, C4.(C3×D9), (C3×C9)⋊3Q8, C9⋊3(C3×Q8), C6.6(S3×C6), C2.3(C6×D9), C12.1(C3×S3), (C3×C36).2C2, C18.9(C2×C6), (C3×C6).45D6, (C3×C12).12S3, C3.1(C3×Dic6), (C3×Dic9).2C2, (C3×C18).13C22, SmallGroup(216,43)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Dic18
G = < a,b,c | a3=b36=1, c2=b18, ab=ba, ac=ca, cbc-1=b-1 >
(1 13 25)(2 14 26)(3 15 27)(4 16 28)(5 17 29)(6 18 30)(7 19 31)(8 20 32)(9 21 33)(10 22 34)(11 23 35)(12 24 36)(37 61 49)(38 62 50)(39 63 51)(40 64 52)(41 65 53)(42 66 54)(43 67 55)(44 68 56)(45 69 57)(46 70 58)(47 71 59)(48 72 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 55 19 37)(2 54 20 72)(3 53 21 71)(4 52 22 70)(5 51 23 69)(6 50 24 68)(7 49 25 67)(8 48 26 66)(9 47 27 65)(10 46 28 64)(11 45 29 63)(12 44 30 62)(13 43 31 61)(14 42 32 60)(15 41 33 59)(16 40 34 58)(17 39 35 57)(18 38 36 56)
G:=sub<Sym(72)| (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,19,37)(2,54,20,72)(3,53,21,71)(4,52,22,70)(5,51,23,69)(6,50,24,68)(7,49,25,67)(8,48,26,66)(9,47,27,65)(10,46,28,64)(11,45,29,63)(12,44,30,62)(13,43,31,61)(14,42,32,60)(15,41,33,59)(16,40,34,58)(17,39,35,57)(18,38,36,56)>;
G:=Group( (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,19,37)(2,54,20,72)(3,53,21,71)(4,52,22,70)(5,51,23,69)(6,50,24,68)(7,49,25,67)(8,48,26,66)(9,47,27,65)(10,46,28,64)(11,45,29,63)(12,44,30,62)(13,43,31,61)(14,42,32,60)(15,41,33,59)(16,40,34,58)(17,39,35,57)(18,38,36,56) );
G=PermutationGroup([[(1,13,25),(2,14,26),(3,15,27),(4,16,28),(5,17,29),(6,18,30),(7,19,31),(8,20,32),(9,21,33),(10,22,34),(11,23,35),(12,24,36),(37,61,49),(38,62,50),(39,63,51),(40,64,52),(41,65,53),(42,66,54),(43,67,55),(44,68,56),(45,69,57),(46,70,58),(47,71,59),(48,72,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,55,19,37),(2,54,20,72),(3,53,21,71),(4,52,22,70),(5,51,23,69),(6,50,24,68),(7,49,25,67),(8,48,26,66),(9,47,27,65),(10,46,28,64),(11,45,29,63),(12,44,30,62),(13,43,31,61),(14,42,32,60),(15,41,33,59),(16,40,34,58),(17,39,35,57),(18,38,36,56)]])
C3×Dic18 is a maximal subgroup of
C6.D36 C3⋊Dic36 D12.D9 C12.D18 Dic18⋊S3 D12⋊D9 Dic9.D6 C3×Q8×D9
63 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 9A | ··· | 9I | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 18A | ··· | 18I | 36A | ··· | 36R |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 18 | 18 | 1 | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 2 | ··· | 2 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | + | - | + | - | ||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | Q8 | D6 | D9 | C3×S3 | C3×Q8 | Dic6 | D18 | S3×C6 | C3×D9 | Dic18 | C3×Dic6 | C6×D9 | C3×Dic18 |
kernel | C3×Dic18 | C3×Dic9 | C3×C36 | Dic18 | Dic9 | C36 | C3×C12 | C3×C9 | C3×C6 | C12 | C12 | C9 | C32 | C6 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 1 | 1 | 3 | 2 | 2 | 2 | 3 | 2 | 6 | 6 | 4 | 6 | 12 |
Matrix representation of C3×Dic18 ►in GL2(𝔽37) generated by
10 | 0 |
0 | 10 |
32 | 0 |
0 | 22 |
0 | 1 |
36 | 0 |
G:=sub<GL(2,GF(37))| [10,0,0,10],[32,0,0,22],[0,36,1,0] >;
C3×Dic18 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_{18}
% in TeX
G:=Group("C3xDic18");
// GroupNames label
G:=SmallGroup(216,43);
// by ID
G=gap.SmallGroup(216,43);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,169,79,3604,208,5189]);
// Polycyclic
G:=Group<a,b,c|a^3=b^36=1,c^2=b^18,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export