Copied to
clipboard

G = C3xDic18order 216 = 23·33

Direct product of C3 and Dic18

direct product, metacyclic, supersoluble, monomial

Aliases: C3xDic18, C36.5C6, C12.7D9, C6.19D18, Dic9.2C6, C32.3Dic6, C4.(C3xD9), (C3xC9):3Q8, C9:3(C3xQ8), C6.6(S3xC6), C2.3(C6xD9), C12.1(C3xS3), (C3xC36).2C2, C18.9(C2xC6), (C3xC6).45D6, (C3xC12).12S3, C3.1(C3xDic6), (C3xDic9).2C2, (C3xC18).13C22, SmallGroup(216,43)

Series: Derived Chief Lower central Upper central

C1C18 — C3xDic18
C1C3C9C18C3xC18C3xDic9 — C3xDic18
C9C18 — C3xDic18
C1C6C12

Generators and relations for C3xDic18
 G = < a,b,c | a3=b36=1, c2=b18, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 108 in 42 conjugacy classes, 24 normal (20 characteristic)
Quotients: C1, C2, C3, C22, S3, C6, Q8, D6, C2xC6, D9, C3xS3, Dic6, C3xQ8, D18, S3xC6, C3xD9, Dic18, C3xDic6, C6xD9, C3xDic18
2C3
9C4
9C4
2C6
2C9
9Q8
2C12
3Dic3
3Dic3
9C12
9C12
2C18
3Dic6
9C3xQ8
2C36
3C3xDic3
3C3xDic3
3C3xDic6

Smallest permutation representation of C3xDic18
On 72 points
Generators in S72
(1 13 25)(2 14 26)(3 15 27)(4 16 28)(5 17 29)(6 18 30)(7 19 31)(8 20 32)(9 21 33)(10 22 34)(11 23 35)(12 24 36)(37 61 49)(38 62 50)(39 63 51)(40 64 52)(41 65 53)(42 66 54)(43 67 55)(44 68 56)(45 69 57)(46 70 58)(47 71 59)(48 72 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 55 19 37)(2 54 20 72)(3 53 21 71)(4 52 22 70)(5 51 23 69)(6 50 24 68)(7 49 25 67)(8 48 26 66)(9 47 27 65)(10 46 28 64)(11 45 29 63)(12 44 30 62)(13 43 31 61)(14 42 32 60)(15 41 33 59)(16 40 34 58)(17 39 35 57)(18 38 36 56)

G:=sub<Sym(72)| (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,19,37)(2,54,20,72)(3,53,21,71)(4,52,22,70)(5,51,23,69)(6,50,24,68)(7,49,25,67)(8,48,26,66)(9,47,27,65)(10,46,28,64)(11,45,29,63)(12,44,30,62)(13,43,31,61)(14,42,32,60)(15,41,33,59)(16,40,34,58)(17,39,35,57)(18,38,36,56)>;

G:=Group( (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,19,37)(2,54,20,72)(3,53,21,71)(4,52,22,70)(5,51,23,69)(6,50,24,68)(7,49,25,67)(8,48,26,66)(9,47,27,65)(10,46,28,64)(11,45,29,63)(12,44,30,62)(13,43,31,61)(14,42,32,60)(15,41,33,59)(16,40,34,58)(17,39,35,57)(18,38,36,56) );

G=PermutationGroup([[(1,13,25),(2,14,26),(3,15,27),(4,16,28),(5,17,29),(6,18,30),(7,19,31),(8,20,32),(9,21,33),(10,22,34),(11,23,35),(12,24,36),(37,61,49),(38,62,50),(39,63,51),(40,64,52),(41,65,53),(42,66,54),(43,67,55),(44,68,56),(45,69,57),(46,70,58),(47,71,59),(48,72,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,55,19,37),(2,54,20,72),(3,53,21,71),(4,52,22,70),(5,51,23,69),(6,50,24,68),(7,49,25,67),(8,48,26,66),(9,47,27,65),(10,46,28,64),(11,45,29,63),(12,44,30,62),(13,43,31,61),(14,42,32,60),(15,41,33,59),(16,40,34,58),(17,39,35,57),(18,38,36,56)]])

C3xDic18 is a maximal subgroup of
C6.D36  C3:Dic36  D12.D9  C12.D18  Dic18:S3  D12:D9  Dic9.D6  C3xQ8xD9

63 conjugacy classes

class 1  2 3A3B3C3D3E4A4B4C6A6B6C6D6E9A···9I12A···12H12I12J12K12L18A···18I36A···36R
order1233333444666669···912···121212121218···1836···36
size111122221818112222···22···2181818182···22···2

63 irreducible representations

dim11111122222222222222
type++++-++-+-
imageC1C2C2C3C6C6S3Q8D6D9C3xS3C3xQ8Dic6D18S3xC6C3xD9Dic18C3xDic6C6xD9C3xDic18
kernelC3xDic18C3xDic9C3xC36Dic18Dic9C36C3xC12C3xC9C3xC6C12C12C9C32C6C6C4C3C3C2C1
# reps121242111322232664612

Matrix representation of C3xDic18 in GL2(F37) generated by

100
010
,
320
022
,
01
360
G:=sub<GL(2,GF(37))| [10,0,0,10],[32,0,0,22],[0,36,1,0] >;

C3xDic18 in GAP, Magma, Sage, TeX

C_3\times {\rm Dic}_{18}
% in TeX

G:=Group("C3xDic18");
// GroupNames label

G:=SmallGroup(216,43);
// by ID

G=gap.SmallGroup(216,43);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,169,79,3604,208,5189]);
// Polycyclic

G:=Group<a,b,c|a^3=b^36=1,c^2=b^18,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C3xDic18 in TeX

׿
x
:
Z
F
o
wr
Q
<