Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D13

Direct product G=N×Q with N=C2×C4 and Q=D13
dρLabelID
C2×C4×D13104C2xC4xD13208,36

Semidirect products G=N:Q with N=C2×C4 and Q=D13
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D13 = D26⋊C4φ: D13/C13C2 ⊆ Aut C2×C4104(C2xC4):1D13208,14
(C2×C4)⋊2D13 = C2×D52φ: D13/C13C2 ⊆ Aut C2×C4104(C2xC4):2D13208,37
(C2×C4)⋊3D13 = D525C2φ: D13/C13C2 ⊆ Aut C2×C41042(C2xC4):3D13208,38

Non-split extensions G=N.Q with N=C2×C4 and Q=D13
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D13 = C26.D4φ: D13/C13C2 ⊆ Aut C2×C4208(C2xC4).1D13208,12
(C2×C4).2D13 = C52.4C4φ: D13/C13C2 ⊆ Aut C2×C41042(C2xC4).2D13208,10
(C2×C4).3D13 = C523C4φ: D13/C13C2 ⊆ Aut C2×C4208(C2xC4).3D13208,13
(C2×C4).4D13 = C2×Dic26φ: D13/C13C2 ⊆ Aut C2×C4208(C2xC4).4D13208,35
(C2×C4).5D13 = C2×C132C8central extension (φ=1)208(C2xC4).5D13208,9
(C2×C4).6D13 = C4×Dic13central extension (φ=1)208(C2xC4).6D13208,11

׿
×
𝔽