Extensions 1→N→G→Q→1 with N=C3 and Q=C4×C3⋊S3

Direct product G=N×Q with N=C3 and Q=C4×C3⋊S3
dρLabelID
C12×C3⋊S372C12xC3:S3216,141

Semidirect products G=N:Q with N=C3 and Q=C4×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C31(C4×C3⋊S3) = C338(C2×C4)φ: C4×C3⋊S3/C3⋊Dic3C2 ⊆ Aut C336C3:1(C4xC3:S3)216,126
C32(C4×C3⋊S3) = C4×C33⋊C2φ: C4×C3⋊S3/C3×C12C2 ⊆ Aut C3108C3:2(C4xC3:S3)216,146
C33(C4×C3⋊S3) = Dic3×C3⋊S3φ: C4×C3⋊S3/C2×C3⋊S3C2 ⊆ Aut C372C3:3(C4xC3:S3)216,125

Non-split extensions G=N.Q with N=C3 and Q=C4×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3.(C4×C3⋊S3) = C4×C9⋊S3φ: C4×C3⋊S3/C3×C12C2 ⊆ Aut C3108C3.(C4xC3:S3)216,64
C3.2(C4×C3⋊S3) = C4×He3⋊C2central stem extension (φ=1)363C3.2(C4xC3:S3)216,67

׿
×
𝔽