# Extensions 1→N→G→Q→1 with N=C26 and Q=C2×C4

Direct product G=N×Q with N=C26 and Q=C2×C4
dρLabelID
C22×C52208C2^2xC52208,45

Semidirect products G=N:Q with N=C26 and Q=C2×C4
extensionφ:Q→Aut NdρLabelID
C26⋊(C2×C4) = C22×C13⋊C4φ: C2×C4/C2C4 ⊆ Aut C2652C26:(C2xC4)208,49
C262(C2×C4) = C2×C4×D13φ: C2×C4/C4C2 ⊆ Aut C26104C26:2(C2xC4)208,36
C263(C2×C4) = C22×Dic13φ: C2×C4/C22C2 ⊆ Aut C26208C26:3(C2xC4)208,43

Non-split extensions G=N.Q with N=C26 and Q=C2×C4
extensionφ:Q→Aut NdρLabelID
C26.1(C2×C4) = D13⋊C8φ: C2×C4/C2C4 ⊆ Aut C261044C26.1(C2xC4)208,28
C26.2(C2×C4) = C52.C4φ: C2×C4/C2C4 ⊆ Aut C261044C26.2(C2xC4)208,29
C26.3(C2×C4) = C4×C13⋊C4φ: C2×C4/C2C4 ⊆ Aut C26524C26.3(C2xC4)208,30
C26.4(C2×C4) = C52⋊C4φ: C2×C4/C2C4 ⊆ Aut C26524C26.4(C2xC4)208,31
C26.5(C2×C4) = C2×C13⋊C8φ: C2×C4/C2C4 ⊆ Aut C26208C26.5(C2xC4)208,32
C26.6(C2×C4) = C13⋊M4(2)φ: C2×C4/C2C4 ⊆ Aut C261044-C26.6(C2xC4)208,33
C26.7(C2×C4) = D13.D4φ: C2×C4/C2C4 ⊆ Aut C26524+C26.7(C2xC4)208,34
C26.8(C2×C4) = C8×D13φ: C2×C4/C4C2 ⊆ Aut C261042C26.8(C2xC4)208,4
C26.9(C2×C4) = C8⋊D13φ: C2×C4/C4C2 ⊆ Aut C261042C26.9(C2xC4)208,5
C26.10(C2×C4) = C4×Dic13φ: C2×C4/C4C2 ⊆ Aut C26208C26.10(C2xC4)208,11
C26.11(C2×C4) = C26.D4φ: C2×C4/C4C2 ⊆ Aut C26208C26.11(C2xC4)208,12
C26.12(C2×C4) = D26⋊C4φ: C2×C4/C4C2 ⊆ Aut C26104C26.12(C2xC4)208,14
C26.13(C2×C4) = C2×C132C8φ: C2×C4/C22C2 ⊆ Aut C26208C26.13(C2xC4)208,9
C26.14(C2×C4) = C52.4C4φ: C2×C4/C22C2 ⊆ Aut C261042C26.14(C2xC4)208,10
C26.15(C2×C4) = C523C4φ: C2×C4/C22C2 ⊆ Aut C26208C26.15(C2xC4)208,13
C26.16(C2×C4) = C23.D13φ: C2×C4/C22C2 ⊆ Aut C26104C26.16(C2xC4)208,19
C26.17(C2×C4) = C13×C22⋊C4central extension (φ=1)104C26.17(C2xC4)208,21
C26.18(C2×C4) = C13×C4⋊C4central extension (φ=1)208C26.18(C2xC4)208,22
C26.19(C2×C4) = C13×M4(2)central extension (φ=1)1042C26.19(C2xC4)208,24

׿
×
𝔽