Extensions 1→N→G→Q→1 with N=C22 and Q=D26

Direct product G=N×Q with N=C22 and Q=D26

Semidirect products G=N:Q with N=C22 and Q=D26
extensionφ:Q→Aut NdρLabelID
C221D26 = D4×D13φ: D26/D13C2 ⊆ Aut C22524+C2^2:1D26208,39
C222D26 = C2×C13⋊D4φ: D26/C26C2 ⊆ Aut C22104C2^2:2D26208,44

Non-split extensions G=N.Q with N=C22 and Q=D26
extensionφ:Q→Aut NdρLabelID
C22.1D26 = D42D13φ: D26/D13C2 ⊆ Aut C221044-C2^2.1D26208,40
C22.2D26 = D525C2φ: D26/C26C2 ⊆ Aut C221042C2^2.2D26208,38
C22.3D26 = C4×Dic13central extension (φ=1)208C2^2.3D26208,11
C22.4D26 = C26.D4central extension (φ=1)208C2^2.4D26208,12
C22.5D26 = C523C4central extension (φ=1)208C2^2.5D26208,13
C22.6D26 = D26⋊C4central extension (φ=1)104C2^2.6D26208,14
C22.7D26 = C23.D13central extension (φ=1)104C2^2.7D26208,19
C22.8D26 = C2×Dic26central extension (φ=1)208C2^2.8D26208,35
C22.9D26 = C2×C4×D13central extension (φ=1)104C2^2.9D26208,36
C22.10D26 = C2×D52central extension (φ=1)104C2^2.10D26208,37
C22.11D26 = C22×Dic13central extension (φ=1)208C2^2.11D26208,43