Extensions 1→N→G→Q→1 with N=C6 and Q=C3⋊Dic3

Direct product G=N×Q with N=C6 and Q=C3⋊Dic3
dρLabelID
C6×C3⋊Dic372C6xC3:Dic3216,143

Semidirect products G=N:Q with N=C6 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C6⋊(C3⋊Dic3) = C2×C335C4φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C6216C6:(C3:Dic3)216,148

Non-split extensions G=N.Q with N=C6 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(C3⋊Dic3) = C36.S3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C6216C6.1(C3:Dic3)216,16
C6.2(C3⋊Dic3) = C2×C9⋊Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C6216C6.2(C3:Dic3)216,69
C6.3(C3⋊Dic3) = C337C8φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C6216C6.3(C3:Dic3)216,84
C6.4(C3⋊Dic3) = He34C8central extension (φ=1)723C6.4(C3:Dic3)216,17
C6.5(C3⋊Dic3) = C2×He33C4central extension (φ=1)72C6.5(C3:Dic3)216,71
C6.6(C3⋊Dic3) = C3×C324C8central extension (φ=1)72C6.6(C3:Dic3)216,83

׿
×
𝔽