direct product, non-abelian, supersoluble, monomial
Aliases: C2×He3⋊3C4, C62.4S3, He3⋊7(C2×C4), (C2×He3)⋊3C4, (C3×C6)⋊2Dic3, (C3×C6).19D6, C6.5(C3⋊Dic3), C32⋊3(C2×Dic3), C22.(He3⋊C2), (C22×He3).2C2, (C2×He3).14C22, C6.20(C2×C3⋊S3), (C2×C6).9(C3⋊S3), C3.2(C2×C3⋊Dic3), C2.2(C2×He3⋊C2), SmallGroup(216,71)
Series: Derived ►Chief ►Lower central ►Upper central
He3 — C2×He3⋊3C4 |
Generators and relations for C2×He3⋊3C4
G = < a,b,c,d,e | a2=b3=c3=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=b-1, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 224 in 88 conjugacy classes, 38 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, C32, Dic3, C12, C2×C6, C2×C6, C3×C6, C2×Dic3, C2×C12, He3, C3×Dic3, C62, C2×He3, C2×He3, C6×Dic3, He3⋊3C4, C22×He3, C2×He3⋊3C4
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C3⋊S3, C2×Dic3, C3⋊Dic3, C2×C3⋊S3, He3⋊C2, C2×C3⋊Dic3, He3⋊3C4, C2×He3⋊C2, C2×He3⋊3C4
(1 40)(2 37)(3 38)(4 39)(5 46)(6 47)(7 48)(8 45)(9 18)(10 19)(11 20)(12 17)(13 35)(14 36)(15 33)(16 34)(21 25)(22 26)(23 27)(24 28)(29 58)(30 59)(31 60)(32 57)(41 62)(42 63)(43 64)(44 61)(49 71)(50 72)(51 69)(52 70)(53 66)(54 67)(55 68)(56 65)
(1 62 29)(2 30 63)(3 64 31)(4 32 61)(5 27 52)(6 49 28)(7 25 50)(8 51 26)(9 33 56)(10 53 34)(11 35 54)(12 55 36)(13 67 20)(14 17 68)(15 65 18)(16 19 66)(21 72 48)(22 45 69)(23 70 46)(24 47 71)(37 59 42)(38 43 60)(39 57 44)(40 41 58)
(1 26 15)(2 27 16)(3 28 13)(4 25 14)(5 66 63)(6 67 64)(7 68 61)(8 65 62)(9 58 69)(10 59 70)(11 60 71)(12 57 72)(17 32 50)(18 29 51)(19 30 52)(20 31 49)(21 36 39)(22 33 40)(23 34 37)(24 35 38)(41 45 56)(42 46 53)(43 47 54)(44 48 55)
(1 29 65)(2 66 30)(3 31 67)(4 68 32)(5 19 16)(6 13 20)(7 17 14)(8 15 18)(9 45 33)(10 34 46)(11 47 35)(12 36 48)(21 44 72)(22 69 41)(23 42 70)(24 71 43)(25 61 50)(26 51 62)(27 63 52)(28 49 64)(37 53 59)(38 60 54)(39 55 57)(40 58 56)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
G:=sub<Sym(72)| (1,40)(2,37)(3,38)(4,39)(5,46)(6,47)(7,48)(8,45)(9,18)(10,19)(11,20)(12,17)(13,35)(14,36)(15,33)(16,34)(21,25)(22,26)(23,27)(24,28)(29,58)(30,59)(31,60)(32,57)(41,62)(42,63)(43,64)(44,61)(49,71)(50,72)(51,69)(52,70)(53,66)(54,67)(55,68)(56,65), (1,62,29)(2,30,63)(3,64,31)(4,32,61)(5,27,52)(6,49,28)(7,25,50)(8,51,26)(9,33,56)(10,53,34)(11,35,54)(12,55,36)(13,67,20)(14,17,68)(15,65,18)(16,19,66)(21,72,48)(22,45,69)(23,70,46)(24,47,71)(37,59,42)(38,43,60)(39,57,44)(40,41,58), (1,26,15)(2,27,16)(3,28,13)(4,25,14)(5,66,63)(6,67,64)(7,68,61)(8,65,62)(9,58,69)(10,59,70)(11,60,71)(12,57,72)(17,32,50)(18,29,51)(19,30,52)(20,31,49)(21,36,39)(22,33,40)(23,34,37)(24,35,38)(41,45,56)(42,46,53)(43,47,54)(44,48,55), (1,29,65)(2,66,30)(3,31,67)(4,68,32)(5,19,16)(6,13,20)(7,17,14)(8,15,18)(9,45,33)(10,34,46)(11,47,35)(12,36,48)(21,44,72)(22,69,41)(23,42,70)(24,71,43)(25,61,50)(26,51,62)(27,63,52)(28,49,64)(37,53,59)(38,60,54)(39,55,57)(40,58,56), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)>;
G:=Group( (1,40)(2,37)(3,38)(4,39)(5,46)(6,47)(7,48)(8,45)(9,18)(10,19)(11,20)(12,17)(13,35)(14,36)(15,33)(16,34)(21,25)(22,26)(23,27)(24,28)(29,58)(30,59)(31,60)(32,57)(41,62)(42,63)(43,64)(44,61)(49,71)(50,72)(51,69)(52,70)(53,66)(54,67)(55,68)(56,65), (1,62,29)(2,30,63)(3,64,31)(4,32,61)(5,27,52)(6,49,28)(7,25,50)(8,51,26)(9,33,56)(10,53,34)(11,35,54)(12,55,36)(13,67,20)(14,17,68)(15,65,18)(16,19,66)(21,72,48)(22,45,69)(23,70,46)(24,47,71)(37,59,42)(38,43,60)(39,57,44)(40,41,58), (1,26,15)(2,27,16)(3,28,13)(4,25,14)(5,66,63)(6,67,64)(7,68,61)(8,65,62)(9,58,69)(10,59,70)(11,60,71)(12,57,72)(17,32,50)(18,29,51)(19,30,52)(20,31,49)(21,36,39)(22,33,40)(23,34,37)(24,35,38)(41,45,56)(42,46,53)(43,47,54)(44,48,55), (1,29,65)(2,66,30)(3,31,67)(4,68,32)(5,19,16)(6,13,20)(7,17,14)(8,15,18)(9,45,33)(10,34,46)(11,47,35)(12,36,48)(21,44,72)(22,69,41)(23,42,70)(24,71,43)(25,61,50)(26,51,62)(27,63,52)(28,49,64)(37,53,59)(38,60,54)(39,55,57)(40,58,56), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72) );
G=PermutationGroup([[(1,40),(2,37),(3,38),(4,39),(5,46),(6,47),(7,48),(8,45),(9,18),(10,19),(11,20),(12,17),(13,35),(14,36),(15,33),(16,34),(21,25),(22,26),(23,27),(24,28),(29,58),(30,59),(31,60),(32,57),(41,62),(42,63),(43,64),(44,61),(49,71),(50,72),(51,69),(52,70),(53,66),(54,67),(55,68),(56,65)], [(1,62,29),(2,30,63),(3,64,31),(4,32,61),(5,27,52),(6,49,28),(7,25,50),(8,51,26),(9,33,56),(10,53,34),(11,35,54),(12,55,36),(13,67,20),(14,17,68),(15,65,18),(16,19,66),(21,72,48),(22,45,69),(23,70,46),(24,47,71),(37,59,42),(38,43,60),(39,57,44),(40,41,58)], [(1,26,15),(2,27,16),(3,28,13),(4,25,14),(5,66,63),(6,67,64),(7,68,61),(8,65,62),(9,58,69),(10,59,70),(11,60,71),(12,57,72),(17,32,50),(18,29,51),(19,30,52),(20,31,49),(21,36,39),(22,33,40),(23,34,37),(24,35,38),(41,45,56),(42,46,53),(43,47,54),(44,48,55)], [(1,29,65),(2,66,30),(3,31,67),(4,68,32),(5,19,16),(6,13,20),(7,17,14),(8,15,18),(9,45,33),(10,34,46),(11,47,35),(12,36,48),(21,44,72),(22,69,41),(23,42,70),(24,71,43),(25,61,50),(26,51,62),(27,63,52),(28,49,64),(37,53,59),(38,60,54),(39,55,57),(40,58,56)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)]])
C2×He3⋊3C4 is a maximal subgroup of
He3⋊C42 C62.D6 C62.3D6 C62.4D6 C62.29D6 C62.30D6 C62.31D6 C62⋊4Dic3 He3⋊4M4(2) C62.9D6 C2×C4×He3⋊C2 C62.16D6
C2×He3⋊3C4 is a maximal quotient of
He3⋊8M4(2) C62.30D6 C62⋊4Dic3
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 4A | 4B | 4C | 4D | 6A | ··· | 6F | 6G | ··· | 6R | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 1 | ··· | 1 | 6 | ··· | 6 | 9 | ··· | 9 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 |
type | + | + | + | + | - | + | ||||
image | C1 | C2 | C2 | C4 | S3 | Dic3 | D6 | He3⋊C2 | He3⋊3C4 | C2×He3⋊C2 |
kernel | C2×He3⋊3C4 | He3⋊3C4 | C22×He3 | C2×He3 | C62 | C3×C6 | C3×C6 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 4 | 4 | 8 | 4 | 4 | 8 | 4 |
Matrix representation of C2×He3⋊3C4 ►in GL5(𝔽13)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 |
0 | 12 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 5 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[0,1,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[0,1,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,9,0,0,3,0,0],[0,5,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
C2×He3⋊3C4 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3\rtimes_3C_4
% in TeX
G:=Group("C2xHe3:3C4");
// GroupNames label
G:=SmallGroup(216,71);
// by ID
G=gap.SmallGroup(216,71);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,387,1444,382]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations