Copied to
clipboard

G = C6xC3:Dic3order 216 = 23·33

Direct product of C6 and C3:Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C6xC3:Dic3, C62.14C6, C62.15S3, C6:(C3xDic3), (C3xC6):5C12, C6.27(S3xC6), (C32xC6):4C4, C33:14(C2xC4), (C3xC6):4Dic3, C3:2(C6xDic3), (C3xC6).60D6, (C3xC62).2C2, C32:10(C2xC12), C32:9(C2xDic3), (C32xC6).24C22, C2.2(C6xC3:S3), C22.(C3xC3:S3), C6.25(C2xC3:S3), (C3xC6).32(C2xC6), (C2xC6).19(C3xS3), (C2xC6).11(C3:S3), SmallGroup(216,143)

Series: Derived Chief Lower central Upper central

C1C32 — C6xC3:Dic3
C1C3C32C3xC6C32xC6C3xC3:Dic3 — C6xC3:Dic3
C32 — C6xC3:Dic3
C1C2xC6

Generators and relations for C6xC3:Dic3
 G = < a,b,c,d | a6=b3=c6=1, d2=c3, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Subgroups: 272 in 136 conjugacy classes, 66 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2xC4, C32, C32, C32, Dic3, C12, C2xC6, C2xC6, C2xC6, C3xC6, C3xC6, C3xC6, C2xDic3, C2xC12, C33, C3xDic3, C3:Dic3, C62, C62, C62, C32xC6, C32xC6, C6xDic3, C2xC3:Dic3, C3xC3:Dic3, C3xC62, C6xC3:Dic3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, Dic3, C12, D6, C2xC6, C3xS3, C3:S3, C2xDic3, C2xC12, C3xDic3, C3:Dic3, S3xC6, C2xC3:S3, C3xC3:S3, C6xDic3, C2xC3:Dic3, C3xC3:Dic3, C6xC3:S3, C6xC3:Dic3

Smallest permutation representation of C6xC3:Dic3
On 72 points
Generators in S72
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 57 44)(2 58 45)(3 59 46)(4 60 47)(5 55 48)(6 56 43)(7 36 63)(8 31 64)(9 32 65)(10 33 66)(11 34 61)(12 35 62)(13 50 23)(14 51 24)(15 52 19)(16 53 20)(17 54 21)(18 49 22)(25 37 70)(26 38 71)(27 39 72)(28 40 67)(29 41 68)(30 42 69)
(1 51 59 20 48 18)(2 52 60 21 43 13)(3 53 55 22 44 14)(4 54 56 23 45 15)(5 49 57 24 46 16)(6 50 58 19 47 17)(7 26 34 42 65 67)(8 27 35 37 66 68)(9 28 36 38 61 69)(10 29 31 39 62 70)(11 30 32 40 63 71)(12 25 33 41 64 72)
(1 32 20 71)(2 33 21 72)(3 34 22 67)(4 35 23 68)(5 36 24 69)(6 31 19 70)(7 14 42 55)(8 15 37 56)(9 16 38 57)(10 17 39 58)(11 18 40 59)(12 13 41 60)(25 43 64 52)(26 44 65 53)(27 45 66 54)(28 46 61 49)(29 47 62 50)(30 48 63 51)

G:=sub<Sym(72)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,57,44)(2,58,45)(3,59,46)(4,60,47)(5,55,48)(6,56,43)(7,36,63)(8,31,64)(9,32,65)(10,33,66)(11,34,61)(12,35,62)(13,50,23)(14,51,24)(15,52,19)(16,53,20)(17,54,21)(18,49,22)(25,37,70)(26,38,71)(27,39,72)(28,40,67)(29,41,68)(30,42,69), (1,51,59,20,48,18)(2,52,60,21,43,13)(3,53,55,22,44,14)(4,54,56,23,45,15)(5,49,57,24,46,16)(6,50,58,19,47,17)(7,26,34,42,65,67)(8,27,35,37,66,68)(9,28,36,38,61,69)(10,29,31,39,62,70)(11,30,32,40,63,71)(12,25,33,41,64,72), (1,32,20,71)(2,33,21,72)(3,34,22,67)(4,35,23,68)(5,36,24,69)(6,31,19,70)(7,14,42,55)(8,15,37,56)(9,16,38,57)(10,17,39,58)(11,18,40,59)(12,13,41,60)(25,43,64,52)(26,44,65,53)(27,45,66,54)(28,46,61,49)(29,47,62,50)(30,48,63,51)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,57,44)(2,58,45)(3,59,46)(4,60,47)(5,55,48)(6,56,43)(7,36,63)(8,31,64)(9,32,65)(10,33,66)(11,34,61)(12,35,62)(13,50,23)(14,51,24)(15,52,19)(16,53,20)(17,54,21)(18,49,22)(25,37,70)(26,38,71)(27,39,72)(28,40,67)(29,41,68)(30,42,69), (1,51,59,20,48,18)(2,52,60,21,43,13)(3,53,55,22,44,14)(4,54,56,23,45,15)(5,49,57,24,46,16)(6,50,58,19,47,17)(7,26,34,42,65,67)(8,27,35,37,66,68)(9,28,36,38,61,69)(10,29,31,39,62,70)(11,30,32,40,63,71)(12,25,33,41,64,72), (1,32,20,71)(2,33,21,72)(3,34,22,67)(4,35,23,68)(5,36,24,69)(6,31,19,70)(7,14,42,55)(8,15,37,56)(9,16,38,57)(10,17,39,58)(11,18,40,59)(12,13,41,60)(25,43,64,52)(26,44,65,53)(27,45,66,54)(28,46,61,49)(29,47,62,50)(30,48,63,51) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,57,44),(2,58,45),(3,59,46),(4,60,47),(5,55,48),(6,56,43),(7,36,63),(8,31,64),(9,32,65),(10,33,66),(11,34,61),(12,35,62),(13,50,23),(14,51,24),(15,52,19),(16,53,20),(17,54,21),(18,49,22),(25,37,70),(26,38,71),(27,39,72),(28,40,67),(29,41,68),(30,42,69)], [(1,51,59,20,48,18),(2,52,60,21,43,13),(3,53,55,22,44,14),(4,54,56,23,45,15),(5,49,57,24,46,16),(6,50,58,19,47,17),(7,26,34,42,65,67),(8,27,35,37,66,68),(9,28,36,38,61,69),(10,29,31,39,62,70),(11,30,32,40,63,71),(12,25,33,41,64,72)], [(1,32,20,71),(2,33,21,72),(3,34,22,67),(4,35,23,68),(5,36,24,69),(6,31,19,70),(7,14,42,55),(8,15,37,56),(9,16,38,57),(10,17,39,58),(11,18,40,59),(12,13,41,60),(25,43,64,52),(26,44,65,53),(27,45,66,54),(28,46,61,49),(29,47,62,50),(30,48,63,51)]])

C6xC3:Dic3 is a maximal subgroup of
C3xDic32  C62.77D6  C62.79D6  C62.80D6  C62.81D6  C62.82D6  C33:6C42  C62.84D6  C62.85D6  C33:12M4(2)  S3xC6xDic3  C62.90D6  C62.96D6  C3:S3xC2xC12

72 conjugacy classes

class 1 2A2B2C3A3B3C···3N4A4B4C4D6A···6F6G···6AP12A···12H
order1222333···344446···66···612···12
size1111112···299991···12···29···9

72 irreducible representations

dim11111111222222
type++++-+
imageC1C2C2C3C4C6C6C12S3Dic3D6C3xS3C3xDic3S3xC6
kernelC6xC3:Dic3C3xC3:Dic3C3xC62C2xC3:Dic3C32xC6C3:Dic3C62C3xC6C62C3xC6C3xC6C2xC6C6C6
# reps121244284848168

Matrix representation of C6xC3:Dic3 in GL5(F13)

90000
04000
00400
000100
000010
,
10000
01000
00100
00030
00009
,
120000
041100
001000
000120
000012
,
50000
05000
011800
00001
000120

G:=sub<GL(5,GF(13))| [9,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,10,0,0,0,0,0,10],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,9],[12,0,0,0,0,0,4,0,0,0,0,11,10,0,0,0,0,0,12,0,0,0,0,0,12],[5,0,0,0,0,0,5,11,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,1,0] >;

C6xC3:Dic3 in GAP, Magma, Sage, TeX

C_6\times C_3\rtimes {\rm Dic}_3
% in TeX

G:=Group("C6xC3:Dic3");
// GroupNames label

G:=SmallGroup(216,143);
// by ID

G=gap.SmallGroup(216,143);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,1444,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^3=c^6=1,d^2=c^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<