Copied to
clipboard

G = D4×C2×C14order 224 = 25·7

Direct product of C2×C14 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C2×C14, C284C23, C243C14, C14.16C24, C4⋊(C22×C14), (C2×C14)⋊2C23, C234(C2×C14), (C23×C14)⋊2C2, (C22×C4)⋊5C14, C22⋊(C22×C14), (C2×C28)⋊15C22, (C22×C28)⋊12C2, C2.1(C23×C14), (C22×C14)⋊6C22, (C2×C4)⋊4(C2×C14), SmallGroup(224,190)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C2×C14
C1C2C14C2×C14C7×D4D4×C14 — D4×C2×C14
C1C2 — D4×C2×C14
C1C22×C14 — D4×C2×C14

Generators and relations for D4×C2×C14
 G = < a,b,c,d | a2=b14=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 316 in 236 conjugacy classes, 156 normal (10 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C2×C4, D4, C23, C23, C23, C14, C14, C14, C22×C4, C2×D4, C24, C28, C2×C14, C2×C14, C22×D4, C2×C28, C7×D4, C22×C14, C22×C14, C22×C14, C22×C28, D4×C14, C23×C14, D4×C2×C14
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C24, C2×C14, C22×D4, C7×D4, C22×C14, D4×C14, C23×C14, D4×C2×C14

Smallest permutation representation of D4×C2×C14
On 112 points
Generators in S112
(1 52)(2 53)(3 54)(4 55)(5 56)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 70)(16 57)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 65)(25 66)(26 67)(27 68)(28 69)(29 110)(30 111)(31 112)(32 99)(33 100)(34 101)(35 102)(36 103)(37 104)(38 105)(39 106)(40 107)(41 108)(42 109)(71 89)(72 90)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 85)(82 86)(83 87)(84 88)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 75 69 36)(2 76 70 37)(3 77 57 38)(4 78 58 39)(5 79 59 40)(6 80 60 41)(7 81 61 42)(8 82 62 29)(9 83 63 30)(10 84 64 31)(11 71 65 32)(12 72 66 33)(13 73 67 34)(14 74 68 35)(15 104 53 94)(16 105 54 95)(17 106 55 96)(18 107 56 97)(19 108 43 98)(20 109 44 85)(21 110 45 86)(22 111 46 87)(23 112 47 88)(24 99 48 89)(25 100 49 90)(26 101 50 91)(27 102 51 92)(28 103 52 93)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 94)(16 95)(17 96)(18 97)(19 98)(20 85)(21 86)(22 87)(23 88)(24 89)(25 90)(26 91)(27 92)(28 93)(43 108)(44 109)(45 110)(46 111)(47 112)(48 99)(49 100)(50 101)(51 102)(52 103)(53 104)(54 105)(55 106)(56 107)(57 77)(58 78)(59 79)(60 80)(61 81)(62 82)(63 83)(64 84)(65 71)(66 72)(67 73)(68 74)(69 75)(70 76)

G:=sub<Sym(112)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,70)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,110)(30,111)(31,112)(32,99)(33,100)(34,101)(35,102)(36,103)(37,104)(38,105)(39,106)(40,107)(41,108)(42,109)(71,89)(72,90)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,85)(82,86)(83,87)(84,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,75,69,36)(2,76,70,37)(3,77,57,38)(4,78,58,39)(5,79,59,40)(6,80,60,41)(7,81,61,42)(8,82,62,29)(9,83,63,30)(10,84,64,31)(11,71,65,32)(12,72,66,33)(13,73,67,34)(14,74,68,35)(15,104,53,94)(16,105,54,95)(17,106,55,96)(18,107,56,97)(19,108,43,98)(20,109,44,85)(21,110,45,86)(22,111,46,87)(23,112,47,88)(24,99,48,89)(25,100,49,90)(26,101,50,91)(27,102,51,92)(28,103,52,93), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,94)(16,95)(17,96)(18,97)(19,98)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(43,108)(44,109)(45,110)(46,111)(47,112)(48,99)(49,100)(50,101)(51,102)(52,103)(53,104)(54,105)(55,106)(56,107)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,71)(66,72)(67,73)(68,74)(69,75)(70,76)>;

G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,70)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,110)(30,111)(31,112)(32,99)(33,100)(34,101)(35,102)(36,103)(37,104)(38,105)(39,106)(40,107)(41,108)(42,109)(71,89)(72,90)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,85)(82,86)(83,87)(84,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,75,69,36)(2,76,70,37)(3,77,57,38)(4,78,58,39)(5,79,59,40)(6,80,60,41)(7,81,61,42)(8,82,62,29)(9,83,63,30)(10,84,64,31)(11,71,65,32)(12,72,66,33)(13,73,67,34)(14,74,68,35)(15,104,53,94)(16,105,54,95)(17,106,55,96)(18,107,56,97)(19,108,43,98)(20,109,44,85)(21,110,45,86)(22,111,46,87)(23,112,47,88)(24,99,48,89)(25,100,49,90)(26,101,50,91)(27,102,51,92)(28,103,52,93), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,94)(16,95)(17,96)(18,97)(19,98)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(43,108)(44,109)(45,110)(46,111)(47,112)(48,99)(49,100)(50,101)(51,102)(52,103)(53,104)(54,105)(55,106)(56,107)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,71)(66,72)(67,73)(68,74)(69,75)(70,76) );

G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,70),(16,57),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,65),(25,66),(26,67),(27,68),(28,69),(29,110),(30,111),(31,112),(32,99),(33,100),(34,101),(35,102),(36,103),(37,104),(38,105),(39,106),(40,107),(41,108),(42,109),(71,89),(72,90),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,85),(82,86),(83,87),(84,88)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,75,69,36),(2,76,70,37),(3,77,57,38),(4,78,58,39),(5,79,59,40),(6,80,60,41),(7,81,61,42),(8,82,62,29),(9,83,63,30),(10,84,64,31),(11,71,65,32),(12,72,66,33),(13,73,67,34),(14,74,68,35),(15,104,53,94),(16,105,54,95),(17,106,55,96),(18,107,56,97),(19,108,43,98),(20,109,44,85),(21,110,45,86),(22,111,46,87),(23,112,47,88),(24,99,48,89),(25,100,49,90),(26,101,50,91),(27,102,51,92),(28,103,52,93)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,94),(16,95),(17,96),(18,97),(19,98),(20,85),(21,86),(22,87),(23,88),(24,89),(25,90),(26,91),(27,92),(28,93),(43,108),(44,109),(45,110),(46,111),(47,112),(48,99),(49,100),(50,101),(51,102),(52,103),(53,104),(54,105),(55,106),(56,107),(57,77),(58,78),(59,79),(60,80),(61,81),(62,82),(63,83),(64,84),(65,71),(66,72),(67,73),(68,74),(69,75),(70,76)]])

D4×C2×C14 is a maximal subgroup of
(D4×C14)⋊6C4  (C2×C14)⋊8D8  (C7×D4).31D4  C24.18D14  C24.19D14  C24.20D14  C24.21D14  C24.38D14  C247D14  C24.41D14  C24.42D14

140 conjugacy classes

class 1 2A···2G2H···2O4A4B4C4D7A···7F14A···14AP14AQ···14CL28A···28X
order12···22···244447···714···1414···1428···28
size11···12···222221···11···12···22···2

140 irreducible representations

dim1111111122
type+++++
imageC1C2C2C2C7C14C14C14D4C7×D4
kernelD4×C2×C14C22×C28D4×C14C23×C14C22×D4C22×C4C2×D4C24C2×C14C22
# reps11122667212424

Matrix representation of D4×C2×C14 in GL4(𝔽29) generated by

28000
02800
0010
0001
,
28000
0100
00160
00016
,
1000
0100
00182
002611
,
28000
02800
00182
002711
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[28,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,18,26,0,0,2,11],[28,0,0,0,0,28,0,0,0,0,18,27,0,0,2,11] >;

D4×C2×C14 in GAP, Magma, Sage, TeX

D_4\times C_2\times C_{14}
% in TeX

G:=Group("D4xC2xC14");
// GroupNames label

G:=SmallGroup(224,190);
// by ID

G=gap.SmallGroup(224,190);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-7,-2,1369]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^14=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽