Copied to
clipboard

G = (C7×D4).31D4order 448 = 26·7

1st non-split extension by C7×D4 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C7×D4).31D4, (C2×C14)⋊11SD16, C28.206(C2×D4), (C2×C28).301D4, C75(C22⋊SD16), (C22×D4).4D7, C14.72C22≀C2, (C2×D4).199D14, D4⋊Dic739C2, D4.13(C7⋊D4), C4⋊Dic722C22, C223(D4.D7), C14.64(C2×SD16), C28.48D426C2, C28.55D416C2, (C2×C28).473C23, (C22×C4).150D14, (C22×C14).197D4, C2.5(C24⋊D7), C23.86(C7⋊D4), C14.103(C8⋊C22), (C2×Dic14)⋊15C22, (D4×C14).241C22, C2.23(D4.D14), (C22×C28).198C22, (D4×C2×C14).4C2, (C2×C7⋊C8)⋊11C22, C4.59(C2×C7⋊D4), (C2×D4.D7)⋊23C2, C2.17(C2×D4.D7), (C2×C14).554(C2×D4), (C2×C4).84(C7⋊D4), (C2×C4).559(C22×D7), C22.217(C2×C7⋊D4), SmallGroup(448,752)

Series: Derived Chief Lower central Upper central

C1C2×C28 — (C7×D4).31D4
C1C7C14C2×C14C2×C28C2×Dic14C2×D4.D7 — (C7×D4).31D4
C7C14C2×C28 — (C7×D4).31D4
C1C22C22×C4C22×D4

Generators and relations for (C7×D4).31D4
 G = < a,b,c,d,e | a7=b4=c2=1, d4=e2=b2, ab=ba, ac=ca, dad-1=eae-1=a-1, cbc=ebe-1=b-1, bd=db, dcd-1=bc, ece-1=b-1c, ede-1=d3 >

Subgroups: 660 in 188 conjugacy classes, 51 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C14, C14, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic7, C28, C28, C2×C14, C2×C14, C2×C14, C22⋊C8, D4⋊C4, C22⋊Q8, C2×SD16, C22×D4, C7⋊C8, Dic14, C2×Dic7, C2×C28, C2×C28, C7×D4, C7×D4, C22×C14, C22×C14, C22⋊SD16, C2×C7⋊C8, Dic7⋊C4, C4⋊Dic7, D4.D7, C23.D7, C2×Dic14, C22×C28, D4×C14, D4×C14, C23×C14, C28.55D4, D4⋊Dic7, C28.48D4, C2×D4.D7, D4×C2×C14, (C7×D4).31D4
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, D14, C22≀C2, C2×SD16, C8⋊C22, C7⋊D4, C22×D7, C22⋊SD16, D4.D7, C2×C7⋊D4, D4.D14, C2×D4.D7, C24⋊D7, (C7×D4).31D4

Smallest permutation representation of (C7×D4).31D4
On 112 points
Generators in S112
(1 109 79 94 26 83 50)(2 51 84 27 95 80 110)(3 111 73 96 28 85 52)(4 53 86 29 89 74 112)(5 105 75 90 30 87 54)(6 55 88 31 91 76 106)(7 107 77 92 32 81 56)(8 49 82 25 93 78 108)(9 67 22 102 46 39 62)(10 63 40 47 103 23 68)(11 69 24 104 48 33 64)(12 57 34 41 97 17 70)(13 71 18 98 42 35 58)(14 59 36 43 99 19 72)(15 65 20 100 44 37 60)(16 61 38 45 101 21 66)
(1 40 5 36)(2 33 6 37)(3 34 7 38)(4 35 8 39)(9 86 13 82)(10 87 14 83)(11 88 15 84)(12 81 16 85)(17 92 21 96)(18 93 22 89)(19 94 23 90)(20 95 24 91)(25 67 29 71)(26 68 30 72)(27 69 31 65)(28 70 32 66)(41 107 45 111)(42 108 46 112)(43 109 47 105)(44 110 48 106)(49 62 53 58)(50 63 54 59)(51 64 55 60)(52 57 56 61)(73 97 77 101)(74 98 78 102)(75 99 79 103)(76 100 80 104)
(1 38)(2 8)(3 36)(4 6)(5 34)(7 40)(9 15)(10 81)(11 13)(12 87)(14 85)(16 83)(17 90)(18 24)(19 96)(20 22)(21 94)(23 92)(25 27)(26 66)(28 72)(29 31)(30 70)(32 68)(33 35)(37 39)(41 105)(42 48)(43 111)(44 46)(45 109)(47 107)(49 51)(50 61)(52 59)(53 55)(54 57)(56 63)(58 64)(60 62)(65 67)(69 71)(73 99)(74 76)(75 97)(77 103)(78 80)(79 101)(82 84)(86 88)(89 91)(93 95)(98 104)(100 102)(106 112)(108 110)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 2 5 6)(3 8 7 4)(9 12 13 16)(10 15 14 11)(17 18 21 22)(19 24 23 20)(25 32 29 28)(26 27 30 31)(33 40 37 36)(34 35 38 39)(41 42 45 46)(43 48 47 44)(49 56 53 52)(50 51 54 55)(57 58 61 62)(59 64 63 60)(65 72 69 68)(66 67 70 71)(73 78 77 74)(75 76 79 80)(81 86 85 82)(83 84 87 88)(89 96 93 92)(90 91 94 95)(97 98 101 102)(99 104 103 100)(105 106 109 110)(107 112 111 108)

G:=sub<Sym(112)| (1,109,79,94,26,83,50)(2,51,84,27,95,80,110)(3,111,73,96,28,85,52)(4,53,86,29,89,74,112)(5,105,75,90,30,87,54)(6,55,88,31,91,76,106)(7,107,77,92,32,81,56)(8,49,82,25,93,78,108)(9,67,22,102,46,39,62)(10,63,40,47,103,23,68)(11,69,24,104,48,33,64)(12,57,34,41,97,17,70)(13,71,18,98,42,35,58)(14,59,36,43,99,19,72)(15,65,20,100,44,37,60)(16,61,38,45,101,21,66), (1,40,5,36)(2,33,6,37)(3,34,7,38)(4,35,8,39)(9,86,13,82)(10,87,14,83)(11,88,15,84)(12,81,16,85)(17,92,21,96)(18,93,22,89)(19,94,23,90)(20,95,24,91)(25,67,29,71)(26,68,30,72)(27,69,31,65)(28,70,32,66)(41,107,45,111)(42,108,46,112)(43,109,47,105)(44,110,48,106)(49,62,53,58)(50,63,54,59)(51,64,55,60)(52,57,56,61)(73,97,77,101)(74,98,78,102)(75,99,79,103)(76,100,80,104), (1,38)(2,8)(3,36)(4,6)(5,34)(7,40)(9,15)(10,81)(11,13)(12,87)(14,85)(16,83)(17,90)(18,24)(19,96)(20,22)(21,94)(23,92)(25,27)(26,66)(28,72)(29,31)(30,70)(32,68)(33,35)(37,39)(41,105)(42,48)(43,111)(44,46)(45,109)(47,107)(49,51)(50,61)(52,59)(53,55)(54,57)(56,63)(58,64)(60,62)(65,67)(69,71)(73,99)(74,76)(75,97)(77,103)(78,80)(79,101)(82,84)(86,88)(89,91)(93,95)(98,104)(100,102)(106,112)(108,110), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,2,5,6)(3,8,7,4)(9,12,13,16)(10,15,14,11)(17,18,21,22)(19,24,23,20)(25,32,29,28)(26,27,30,31)(33,40,37,36)(34,35,38,39)(41,42,45,46)(43,48,47,44)(49,56,53,52)(50,51,54,55)(57,58,61,62)(59,64,63,60)(65,72,69,68)(66,67,70,71)(73,78,77,74)(75,76,79,80)(81,86,85,82)(83,84,87,88)(89,96,93,92)(90,91,94,95)(97,98,101,102)(99,104,103,100)(105,106,109,110)(107,112,111,108)>;

G:=Group( (1,109,79,94,26,83,50)(2,51,84,27,95,80,110)(3,111,73,96,28,85,52)(4,53,86,29,89,74,112)(5,105,75,90,30,87,54)(6,55,88,31,91,76,106)(7,107,77,92,32,81,56)(8,49,82,25,93,78,108)(9,67,22,102,46,39,62)(10,63,40,47,103,23,68)(11,69,24,104,48,33,64)(12,57,34,41,97,17,70)(13,71,18,98,42,35,58)(14,59,36,43,99,19,72)(15,65,20,100,44,37,60)(16,61,38,45,101,21,66), (1,40,5,36)(2,33,6,37)(3,34,7,38)(4,35,8,39)(9,86,13,82)(10,87,14,83)(11,88,15,84)(12,81,16,85)(17,92,21,96)(18,93,22,89)(19,94,23,90)(20,95,24,91)(25,67,29,71)(26,68,30,72)(27,69,31,65)(28,70,32,66)(41,107,45,111)(42,108,46,112)(43,109,47,105)(44,110,48,106)(49,62,53,58)(50,63,54,59)(51,64,55,60)(52,57,56,61)(73,97,77,101)(74,98,78,102)(75,99,79,103)(76,100,80,104), (1,38)(2,8)(3,36)(4,6)(5,34)(7,40)(9,15)(10,81)(11,13)(12,87)(14,85)(16,83)(17,90)(18,24)(19,96)(20,22)(21,94)(23,92)(25,27)(26,66)(28,72)(29,31)(30,70)(32,68)(33,35)(37,39)(41,105)(42,48)(43,111)(44,46)(45,109)(47,107)(49,51)(50,61)(52,59)(53,55)(54,57)(56,63)(58,64)(60,62)(65,67)(69,71)(73,99)(74,76)(75,97)(77,103)(78,80)(79,101)(82,84)(86,88)(89,91)(93,95)(98,104)(100,102)(106,112)(108,110), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,2,5,6)(3,8,7,4)(9,12,13,16)(10,15,14,11)(17,18,21,22)(19,24,23,20)(25,32,29,28)(26,27,30,31)(33,40,37,36)(34,35,38,39)(41,42,45,46)(43,48,47,44)(49,56,53,52)(50,51,54,55)(57,58,61,62)(59,64,63,60)(65,72,69,68)(66,67,70,71)(73,78,77,74)(75,76,79,80)(81,86,85,82)(83,84,87,88)(89,96,93,92)(90,91,94,95)(97,98,101,102)(99,104,103,100)(105,106,109,110)(107,112,111,108) );

G=PermutationGroup([[(1,109,79,94,26,83,50),(2,51,84,27,95,80,110),(3,111,73,96,28,85,52),(4,53,86,29,89,74,112),(5,105,75,90,30,87,54),(6,55,88,31,91,76,106),(7,107,77,92,32,81,56),(8,49,82,25,93,78,108),(9,67,22,102,46,39,62),(10,63,40,47,103,23,68),(11,69,24,104,48,33,64),(12,57,34,41,97,17,70),(13,71,18,98,42,35,58),(14,59,36,43,99,19,72),(15,65,20,100,44,37,60),(16,61,38,45,101,21,66)], [(1,40,5,36),(2,33,6,37),(3,34,7,38),(4,35,8,39),(9,86,13,82),(10,87,14,83),(11,88,15,84),(12,81,16,85),(17,92,21,96),(18,93,22,89),(19,94,23,90),(20,95,24,91),(25,67,29,71),(26,68,30,72),(27,69,31,65),(28,70,32,66),(41,107,45,111),(42,108,46,112),(43,109,47,105),(44,110,48,106),(49,62,53,58),(50,63,54,59),(51,64,55,60),(52,57,56,61),(73,97,77,101),(74,98,78,102),(75,99,79,103),(76,100,80,104)], [(1,38),(2,8),(3,36),(4,6),(5,34),(7,40),(9,15),(10,81),(11,13),(12,87),(14,85),(16,83),(17,90),(18,24),(19,96),(20,22),(21,94),(23,92),(25,27),(26,66),(28,72),(29,31),(30,70),(32,68),(33,35),(37,39),(41,105),(42,48),(43,111),(44,46),(45,109),(47,107),(49,51),(50,61),(52,59),(53,55),(54,57),(56,63),(58,64),(60,62),(65,67),(69,71),(73,99),(74,76),(75,97),(77,103),(78,80),(79,101),(82,84),(86,88),(89,91),(93,95),(98,104),(100,102),(106,112),(108,110)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,2,5,6),(3,8,7,4),(9,12,13,16),(10,15,14,11),(17,18,21,22),(19,24,23,20),(25,32,29,28),(26,27,30,31),(33,40,37,36),(34,35,38,39),(41,42,45,46),(43,48,47,44),(49,56,53,52),(50,51,54,55),(57,58,61,62),(59,64,63,60),(65,72,69,68),(66,67,70,71),(73,78,77,74),(75,76,79,80),(81,86,85,82),(83,84,87,88),(89,96,93,92),(90,91,94,95),(97,98,101,102),(99,104,103,100),(105,106,109,110),(107,112,111,108)]])

79 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E7A7B7C8A8B8C8D14A···14U14V···14AS28A···28L
order122222222244444777888814···1414···1428···28
size11112244442245656222282828282···24···44···4

79 irreducible representations

dim1111112222222222444
type+++++++++++++-
imageC1C2C2C2C2C2D4D4D4D7SD16D14D14C7⋊D4C7⋊D4C7⋊D4C8⋊C22D4.D7D4.D14
kernel(C7×D4).31D4C28.55D4D4⋊Dic7C28.48D4C2×D4.D7D4×C2×C14C2×C28C7×D4C22×C14C22×D4C2×C14C22×C4C2×D4C2×C4D4C23C14C22C2
# reps11212114134366246166

Matrix representation of (C7×D4).31D4 in GL6(𝔽113)

731120000
75640000
001000
000100
000010
000001
,
100000
010000
001000
000100
0000112111
000011
,
100000
010000
00112000
00011200
00001120
000011
,
36760000
35770000
001211200
003210100
0000026
000010087
,
36760000
35770000
00101100
00831200
00008787
00001326

G:=sub<GL(6,GF(113))| [73,75,0,0,0,0,112,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,1,0,0,0,0,111,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,1,0,0,0,0,0,1],[36,35,0,0,0,0,76,77,0,0,0,0,0,0,12,32,0,0,0,0,112,101,0,0,0,0,0,0,0,100,0,0,0,0,26,87],[36,35,0,0,0,0,76,77,0,0,0,0,0,0,101,83,0,0,0,0,1,12,0,0,0,0,0,0,87,13,0,0,0,0,87,26] >;

(C7×D4).31D4 in GAP, Magma, Sage, TeX

(C_7\times D_4)._{31}D_4
% in TeX

G:=Group("(C7xD4).31D4");
// GroupNames label

G:=SmallGroup(448,752);
// by ID

G=gap.SmallGroup(448,752);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,253,254,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=c^2=1,d^4=e^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a^-1,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽