# Extensions 1→N→G→Q→1 with N=S3×C10 and Q=C4

Direct product G=N×Q with N=S3×C10 and Q=C4
dρLabelID
S3×C2×C20120S3xC2xC20240,166

Semidirect products G=N:Q with N=S3×C10 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C10)⋊1C4 = D6⋊F5φ: C4/C1C4 ⊆ Out S3×C10608+(S3xC10):1C4240,96
(S3×C10)⋊2C4 = C2×S3×F5φ: C4/C1C4 ⊆ Out S3×C10308+(S3xC10):2C4240,195
(S3×C10)⋊3C4 = D6⋊Dic5φ: C4/C2C2 ⊆ Out S3×C10120(S3xC10):3C4240,27
(S3×C10)⋊4C4 = C2×S3×Dic5φ: C4/C2C2 ⊆ Out S3×C10120(S3xC10):4C4240,142
(S3×C10)⋊5C4 = C5×D6⋊C4φ: C4/C2C2 ⊆ Out S3×C10120(S3xC10):5C4240,59

Non-split extensions G=N.Q with N=S3×C10 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×C10).1C4 = S3×C5⋊C8φ: C4/C1C4 ⊆ Out S3×C101208-(S3xC10).1C4240,98
(S3×C10).2C4 = D6.F5φ: C4/C1C4 ⊆ Out S3×C101208-(S3xC10).2C4240,100
(S3×C10).3C4 = S3×C52C8φ: C4/C2C2 ⊆ Out S3×C101204(S3xC10).3C4240,8
(S3×C10).4C4 = D6.Dic5φ: C4/C2C2 ⊆ Out S3×C101204(S3xC10).4C4240,11
(S3×C10).5C4 = C5×C8⋊S3φ: C4/C2C2 ⊆ Out S3×C101202(S3xC10).5C4240,50
(S3×C10).6C4 = S3×C40φ: trivial image1202(S3xC10).6C4240,49

׿
×
𝔽