# Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C10

Direct product G=N×Q with N=C22 and Q=S3×C10
dρLabelID
S3×C22×C10120S3xC2^2xC10240,206

Semidirect products G=N:Q with N=C22 and Q=S3×C10
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C10) = C10×S4φ: S3×C10/C10S3 ⊆ Aut C22303C2^2:(S3xC10)240,196
C222(S3×C10) = C5×S3×D4φ: S3×C10/C5×S3C2 ⊆ Aut C22604C2^2:2(S3xC10)240,169
C223(S3×C10) = C10×C3⋊D4φ: S3×C10/C30C2 ⊆ Aut C22120C2^2:3(S3xC10)240,174

Non-split extensions G=N.Q with N=C22 and Q=S3×C10
extensionφ:Q→Aut NdρLabelID
C22.1(S3×C10) = C5×D42S3φ: S3×C10/C5×S3C2 ⊆ Aut C221204C2^2.1(S3xC10)240,170
C22.2(S3×C10) = C5×C4○D12φ: S3×C10/C30C2 ⊆ Aut C221202C2^2.2(S3xC10)240,168
C22.3(S3×C10) = Dic3×C20central extension (φ=1)240C2^2.3(S3xC10)240,56
C22.4(S3×C10) = C5×Dic3⋊C4central extension (φ=1)240C2^2.4(S3xC10)240,57
C22.5(S3×C10) = C5×C4⋊Dic3central extension (φ=1)240C2^2.5(S3xC10)240,58
C22.6(S3×C10) = C5×D6⋊C4central extension (φ=1)120C2^2.6(S3xC10)240,59
C22.7(S3×C10) = C5×C6.D4central extension (φ=1)120C2^2.7(S3xC10)240,64
C22.8(S3×C10) = C10×Dic6central extension (φ=1)240C2^2.8(S3xC10)240,165
C22.9(S3×C10) = S3×C2×C20central extension (φ=1)120C2^2.9(S3xC10)240,166
C22.10(S3×C10) = C10×D12central extension (φ=1)120C2^2.10(S3xC10)240,167
C22.11(S3×C10) = Dic3×C2×C10central extension (φ=1)240C2^2.11(S3xC10)240,173

׿
×
𝔽