Extensions 1→N→G→Q→1 with N=C22×D5 and Q=S3

Direct product G=N×Q with N=C22×D5 and Q=S3

Semidirect products G=N:Q with N=C22×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×D5)⋊S3 = D5×S4φ: S3/C1S3 ⊆ Out C22×D5206+(C2^2xD5):S3240,194
(C22×D5)⋊2S3 = C2×C15⋊D4φ: S3/C3C2 ⊆ Out C22×D5120(C2^2xD5):2S3240,145
(C22×D5)⋊3S3 = C2×C3⋊D20φ: S3/C3C2 ⊆ Out C22×D5120(C2^2xD5):3S3240,146
(C22×D5)⋊4S3 = D5×C3⋊D4φ: S3/C3C2 ⊆ Out C22×D5604(C2^2xD5):4S3240,149

Non-split extensions G=N.Q with N=C22×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×D5).S3 = A4⋊F5φ: S3/C1S3 ⊆ Out C22×D52012+(C2^2xD5).S3240,192
(C22×D5).2S3 = D10⋊Dic3φ: S3/C3C2 ⊆ Out C22×D5120(C2^2xD5).2S3240,26
(C22×D5).3S3 = D10.D6φ: S3/C3C2 ⊆ Out C22×D5604(C2^2xD5).3S3240,124
(C22×D5).4S3 = C22×C3⋊F5φ: S3/C3C2 ⊆ Out C22×D560(C2^2xD5).4S3240,201
(C22×D5).5S3 = C2×D5×Dic3φ: trivial image120(C2^2xD5).5S3240,139