metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C6.10D20, C30.13D4, D10⋊1Dic3, (C6×D5)⋊1C4, C6.13(C4×D5), (C2×C6).6D10, (C2×C10).6D6, C15⋊4(C22⋊C4), C30.29(C2×C4), (C2×Dic3)⋊1D5, C2.4(D5×Dic3), C3⋊3(D10⋊C4), C22.5(S3×D5), (C10×Dic3)⋊1C2, (C2×Dic15)⋊5C2, C2.1(C15⋊D4), C5⋊2(C6.D4), C2.1(C3⋊D20), C6.11(C5⋊D4), (C2×C30).3C22, (C22×D5).2S3, C10.11(C3⋊D4), C10.11(C2×Dic3), (D5×C2×C6).1C2, SmallGroup(240,26)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10⋊Dic3
G = < a,b,c,d | a10=b2=c6=1, d2=c3, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a5b, dcd-1=c-1 >
Subgroups: 272 in 68 conjugacy classes, 30 normal (26 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C23, D5, C10, Dic3, C2×C6, C2×C6, C15, C22⋊C4, Dic5, C20, D10, D10, C2×C10, C2×Dic3, C2×Dic3, C22×C6, C3×D5, C30, C2×Dic5, C2×C20, C22×D5, C6.D4, C5×Dic3, Dic15, C6×D5, C6×D5, C2×C30, D10⋊C4, C10×Dic3, C2×Dic15, D5×C2×C6, D10⋊Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, Dic3, D6, C22⋊C4, D10, C2×Dic3, C3⋊D4, C4×D5, D20, C5⋊D4, C6.D4, S3×D5, D10⋊C4, D5×Dic3, C15⋊D4, C3⋊D20, D10⋊Dic3
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 52)(2 51)(3 60)(4 59)(5 58)(6 57)(7 56)(8 55)(9 54)(10 53)(11 99)(12 98)(13 97)(14 96)(15 95)(16 94)(17 93)(18 92)(19 91)(20 100)(21 47)(22 46)(23 45)(24 44)(25 43)(26 42)(27 41)(28 50)(29 49)(30 48)(31 68)(32 67)(33 66)(34 65)(35 64)(36 63)(37 62)(38 61)(39 70)(40 69)(71 103)(72 102)(73 101)(74 110)(75 109)(76 108)(77 107)(78 106)(79 105)(80 104)(81 119)(82 118)(83 117)(84 116)(85 115)(86 114)(87 113)(88 112)(89 111)(90 120)
(1 65 29 53 35 50)(2 66 30 54 36 41)(3 67 21 55 37 42)(4 68 22 56 38 43)(5 69 23 57 39 44)(6 70 24 58 40 45)(7 61 25 59 31 46)(8 62 26 60 32 47)(9 63 27 51 33 48)(10 64 28 52 34 49)(11 83 110 95 113 80)(12 84 101 96 114 71)(13 85 102 97 115 72)(14 86 103 98 116 73)(15 87 104 99 117 74)(16 88 105 100 118 75)(17 89 106 91 119 76)(18 90 107 92 120 77)(19 81 108 93 111 78)(20 82 109 94 112 79)
(1 113 53 83)(2 114 54 84)(3 115 55 85)(4 116 56 86)(5 117 57 87)(6 118 58 88)(7 119 59 89)(8 120 60 90)(9 111 51 81)(10 112 52 82)(11 65 95 35)(12 66 96 36)(13 67 97 37)(14 68 98 38)(15 69 99 39)(16 70 100 40)(17 61 91 31)(18 62 92 32)(19 63 93 33)(20 64 94 34)(21 102 42 72)(22 103 43 73)(23 104 44 74)(24 105 45 75)(25 106 46 76)(26 107 47 77)(27 108 48 78)(28 109 49 79)(29 110 50 80)(30 101 41 71)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,52)(2,51)(3,60)(4,59)(5,58)(6,57)(7,56)(8,55)(9,54)(10,53)(11,99)(12,98)(13,97)(14,96)(15,95)(16,94)(17,93)(18,92)(19,91)(20,100)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,50)(29,49)(30,48)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,70)(40,69)(71,103)(72,102)(73,101)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,119)(82,118)(83,117)(84,116)(85,115)(86,114)(87,113)(88,112)(89,111)(90,120), (1,65,29,53,35,50)(2,66,30,54,36,41)(3,67,21,55,37,42)(4,68,22,56,38,43)(5,69,23,57,39,44)(6,70,24,58,40,45)(7,61,25,59,31,46)(8,62,26,60,32,47)(9,63,27,51,33,48)(10,64,28,52,34,49)(11,83,110,95,113,80)(12,84,101,96,114,71)(13,85,102,97,115,72)(14,86,103,98,116,73)(15,87,104,99,117,74)(16,88,105,100,118,75)(17,89,106,91,119,76)(18,90,107,92,120,77)(19,81,108,93,111,78)(20,82,109,94,112,79), (1,113,53,83)(2,114,54,84)(3,115,55,85)(4,116,56,86)(5,117,57,87)(6,118,58,88)(7,119,59,89)(8,120,60,90)(9,111,51,81)(10,112,52,82)(11,65,95,35)(12,66,96,36)(13,67,97,37)(14,68,98,38)(15,69,99,39)(16,70,100,40)(17,61,91,31)(18,62,92,32)(19,63,93,33)(20,64,94,34)(21,102,42,72)(22,103,43,73)(23,104,44,74)(24,105,45,75)(25,106,46,76)(26,107,47,77)(27,108,48,78)(28,109,49,79)(29,110,50,80)(30,101,41,71)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,52)(2,51)(3,60)(4,59)(5,58)(6,57)(7,56)(8,55)(9,54)(10,53)(11,99)(12,98)(13,97)(14,96)(15,95)(16,94)(17,93)(18,92)(19,91)(20,100)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,50)(29,49)(30,48)(31,68)(32,67)(33,66)(34,65)(35,64)(36,63)(37,62)(38,61)(39,70)(40,69)(71,103)(72,102)(73,101)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,119)(82,118)(83,117)(84,116)(85,115)(86,114)(87,113)(88,112)(89,111)(90,120), (1,65,29,53,35,50)(2,66,30,54,36,41)(3,67,21,55,37,42)(4,68,22,56,38,43)(5,69,23,57,39,44)(6,70,24,58,40,45)(7,61,25,59,31,46)(8,62,26,60,32,47)(9,63,27,51,33,48)(10,64,28,52,34,49)(11,83,110,95,113,80)(12,84,101,96,114,71)(13,85,102,97,115,72)(14,86,103,98,116,73)(15,87,104,99,117,74)(16,88,105,100,118,75)(17,89,106,91,119,76)(18,90,107,92,120,77)(19,81,108,93,111,78)(20,82,109,94,112,79), (1,113,53,83)(2,114,54,84)(3,115,55,85)(4,116,56,86)(5,117,57,87)(6,118,58,88)(7,119,59,89)(8,120,60,90)(9,111,51,81)(10,112,52,82)(11,65,95,35)(12,66,96,36)(13,67,97,37)(14,68,98,38)(15,69,99,39)(16,70,100,40)(17,61,91,31)(18,62,92,32)(19,63,93,33)(20,64,94,34)(21,102,42,72)(22,103,43,73)(23,104,44,74)(24,105,45,75)(25,106,46,76)(26,107,47,77)(27,108,48,78)(28,109,49,79)(29,110,50,80)(30,101,41,71) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,52),(2,51),(3,60),(4,59),(5,58),(6,57),(7,56),(8,55),(9,54),(10,53),(11,99),(12,98),(13,97),(14,96),(15,95),(16,94),(17,93),(18,92),(19,91),(20,100),(21,47),(22,46),(23,45),(24,44),(25,43),(26,42),(27,41),(28,50),(29,49),(30,48),(31,68),(32,67),(33,66),(34,65),(35,64),(36,63),(37,62),(38,61),(39,70),(40,69),(71,103),(72,102),(73,101),(74,110),(75,109),(76,108),(77,107),(78,106),(79,105),(80,104),(81,119),(82,118),(83,117),(84,116),(85,115),(86,114),(87,113),(88,112),(89,111),(90,120)], [(1,65,29,53,35,50),(2,66,30,54,36,41),(3,67,21,55,37,42),(4,68,22,56,38,43),(5,69,23,57,39,44),(6,70,24,58,40,45),(7,61,25,59,31,46),(8,62,26,60,32,47),(9,63,27,51,33,48),(10,64,28,52,34,49),(11,83,110,95,113,80),(12,84,101,96,114,71),(13,85,102,97,115,72),(14,86,103,98,116,73),(15,87,104,99,117,74),(16,88,105,100,118,75),(17,89,106,91,119,76),(18,90,107,92,120,77),(19,81,108,93,111,78),(20,82,109,94,112,79)], [(1,113,53,83),(2,114,54,84),(3,115,55,85),(4,116,56,86),(5,117,57,87),(6,118,58,88),(7,119,59,89),(8,120,60,90),(9,111,51,81),(10,112,52,82),(11,65,95,35),(12,66,96,36),(13,67,97,37),(14,68,98,38),(15,69,99,39),(16,70,100,40),(17,61,91,31),(18,62,92,32),(19,63,93,33),(20,64,94,34),(21,102,42,72),(22,103,43,73),(23,104,44,74),(24,105,45,75),(25,106,46,76),(26,107,47,77),(27,108,48,78),(28,109,49,79),(29,110,50,80),(30,101,41,71)]])
D10⋊Dic3 is a maximal subgroup of
Dic3⋊C4⋊D5 D10⋊Dic6 Dic3.D20 D30.34D4 D30.D4 (D5×C12)⋊C4 (C4×D5)⋊Dic3 C60.67D4 C60.68D4 (C2×C12).D10 (C2×C60).C22 (C4×Dic3)⋊D5 C60.44D4 (C4×Dic15)⋊C2 C60.88D4 (D5×Dic3)⋊C4 D10.19(C4×S3) (C6×D5).D4 Dic15⋊D4 Dic3⋊D20 D10⋊1Dic6 D10⋊2Dic6 Dic3×D20 Dic15.D4 D10⋊4Dic6 D20⋊8Dic3 C4×C15⋊D4 D6⋊(C4×D5) C4×C3⋊D20 C15⋊20(C4×D4) D6⋊C4⋊D5 D10⋊C4⋊S3 (C2×Dic6)⋊D5 C60⋊4D4 D6.9D20 Dic15.10D4 Dic15.31D4 C12⋊2D20 S3×D10⋊C4 D30.27D4 D6⋊4D20 D30⋊6D4 C6.(D4×D5) (C2×C30).D4 C6.(C2×D20) D5×C6.D4 C23.17(S3×D5) Dic3×C5⋊D4 Dic15⋊16D4 (C2×C30)⋊D4 (C2×C6)⋊8D20 (S3×C10)⋊D4 (C2×C6)⋊D20 Dic15⋊18D4 D30⋊8D4
D10⋊Dic3 is a maximal quotient of
C60.93D4 C60.28D4 C12.6D20 C30.D8 C6.D40 C30.Q16 C6.Dic20 C60.96D4 C60.97D4 C30.24C42 (C2×C6).D20
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 10A | ··· | 10F | 15A | 15B | 20A | ··· | 20H | 30A | ··· | 30F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | ··· | 10 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 2 | 6 | 6 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | ··· | 2 | 4 | 4 | 6 | ··· | 6 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | + | - | - | + | ||||
image | C1 | C2 | C2 | C2 | C4 | S3 | D4 | D5 | Dic3 | D6 | D10 | C3⋊D4 | C4×D5 | D20 | C5⋊D4 | S3×D5 | D5×Dic3 | C15⋊D4 | C3⋊D20 |
kernel | D10⋊Dic3 | C10×Dic3 | C2×Dic15 | D5×C2×C6 | C6×D5 | C22×D5 | C30 | C2×Dic3 | D10 | C2×C10 | C2×C6 | C10 | C6 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 2 | 2 | 1 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 |
Matrix representation of D10⋊Dic3 ►in GL4(𝔽61) generated by
17 | 17 | 0 | 0 |
44 | 1 | 0 | 0 |
0 | 0 | 60 | 0 |
0 | 0 | 0 | 60 |
44 | 44 | 0 | 0 |
60 | 17 | 0 | 0 |
0 | 0 | 60 | 0 |
0 | 0 | 23 | 1 |
60 | 0 | 0 | 0 |
0 | 60 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 25 | 47 |
29 | 54 | 0 | 0 |
7 | 32 | 0 | 0 |
0 | 0 | 27 | 5 |
0 | 0 | 13 | 34 |
G:=sub<GL(4,GF(61))| [17,44,0,0,17,1,0,0,0,0,60,0,0,0,0,60],[44,60,0,0,44,17,0,0,0,0,60,23,0,0,0,1],[60,0,0,0,0,60,0,0,0,0,13,25,0,0,0,47],[29,7,0,0,54,32,0,0,0,0,27,13,0,0,5,34] >;
D10⋊Dic3 in GAP, Magma, Sage, TeX
D_{10}\rtimes {\rm Dic}_3
% in TeX
G:=Group("D10:Dic3");
// GroupNames label
G:=SmallGroup(240,26);
// by ID
G=gap.SmallGroup(240,26);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,121,31,490,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations