# Extensions 1→N→G→Q→1 with N=D5×C12 and Q=C2

Direct product G=N×Q with N=D5×C12 and Q=C2
dρLabelID
D5×C2×C12120D5xC2xC12240,156

Semidirect products G=N:Q with N=D5×C12 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C12)⋊1C2 = D125D5φ: C2/C1C2 ⊆ Out D5×C121204-(D5xC12):1C2240,133
(D5×C12)⋊2C2 = C12.28D10φ: C2/C1C2 ⊆ Out D5×C121204+(D5xC12):2C2240,134
(D5×C12)⋊3C2 = D5×D12φ: C2/C1C2 ⊆ Out D5×C12604+(D5xC12):3C2240,136
(D5×C12)⋊4C2 = D6.D10φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12):4C2240,132
(D5×C12)⋊5C2 = C4×S3×D5φ: C2/C1C2 ⊆ Out D5×C12604(D5xC12):5C2240,135
(D5×C12)⋊6C2 = C3×D4×D5φ: C2/C1C2 ⊆ Out D5×C12604(D5xC12):6C2240,159
(D5×C12)⋊7C2 = C3×D42D5φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12):7C2240,160
(D5×C12)⋊8C2 = C3×Q82D5φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12):8C2240,162
(D5×C12)⋊9C2 = C3×C4○D20φ: C2/C1C2 ⊆ Out D5×C121202(D5xC12):9C2240,158

Non-split extensions G=N.Q with N=D5×C12 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C12).1C2 = D5×Dic6φ: C2/C1C2 ⊆ Out D5×C121204-(D5xC12).1C2240,125
(D5×C12).2C2 = D5×C3⋊C8φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12).2C2240,7
(D5×C12).3C2 = C20.32D6φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12).3C2240,10
(D5×C12).4C2 = C3×Q8×D5φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12).4C2240,161
(D5×C12).5C2 = C12.F5φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12).5C2240,119
(D5×C12).6C2 = C60⋊C4φ: C2/C1C2 ⊆ Out D5×C12604(D5xC12).6C2240,121
(D5×C12).7C2 = C3×C8⋊D5φ: C2/C1C2 ⊆ Out D5×C121202(D5xC12).7C2240,34
(D5×C12).8C2 = C60.C4φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12).8C2240,118
(D5×C12).9C2 = C4×C3⋊F5φ: C2/C1C2 ⊆ Out D5×C12604(D5xC12).9C2240,120
(D5×C12).10C2 = C3×C4.F5φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12).10C2240,112
(D5×C12).11C2 = C3×C4⋊F5φ: C2/C1C2 ⊆ Out D5×C12604(D5xC12).11C2240,114
(D5×C12).12C2 = C3×D5⋊C8φ: C2/C1C2 ⊆ Out D5×C121204(D5xC12).12C2240,111
(D5×C12).13C2 = C12×F5φ: C2/C1C2 ⊆ Out D5×C12604(D5xC12).13C2240,113
(D5×C12).14C2 = D5×C24φ: trivial image1202(D5xC12).14C2240,33

׿
×
𝔽