Copied to
clipboard

G = C3×C4○D20order 240 = 24·3·5

Direct product of C3 and C4○D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C4○D20, D205C6, Dic105C6, C12.60D10, C30.41C23, C60.63C22, (C2×C60)⋊9C2, (C2×C20)⋊4C6, (C4×D5)⋊4C6, (C2×C12)⋊7D5, C5⋊D43C6, (D5×C12)⋊9C2, C4.16(C6×D5), (C3×D20)⋊11C2, C1512(C4○D4), C20.12(C2×C6), D10.1(C2×C6), (C2×C6).20D10, C22.2(C6×D5), C10.4(C22×C6), Dic5.2(C2×C6), C6.41(C22×D5), (C3×Dic10)⋊11C2, (C2×C30).40C22, (C6×D5).16C22, (C3×Dic5).18C22, C51(C3×C4○D4), C2.5(D5×C2×C6), (C2×C4)⋊3(C3×D5), (C3×C5⋊D4)⋊7C2, (C2×C10).11(C2×C6), SmallGroup(240,158)

Series: Derived Chief Lower central Upper central

C1C10 — C3×C4○D20
C1C5C10C30C6×D5D5×C12 — C3×C4○D20
C5C10 — C3×C4○D20
C1C12C2×C12

Generators and relations for C3×C4○D20
 G = < a,b,c,d | a3=b4=d2=1, c10=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c9 >

Subgroups: 212 in 80 conjugacy classes, 46 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C2×C4, C2×C4, D4, Q8, D5, C10, C10, C12, C12, C2×C6, C2×C6, C15, C4○D4, Dic5, C20, D10, C2×C10, C2×C12, C2×C12, C3×D4, C3×Q8, C3×D5, C30, C30, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C3×C4○D4, C3×Dic5, C60, C6×D5, C2×C30, C4○D20, C3×Dic10, D5×C12, C3×D20, C3×C5⋊D4, C2×C60, C3×C4○D20
Quotients: C1, C2, C3, C22, C6, C23, D5, C2×C6, C4○D4, D10, C22×C6, C3×D5, C22×D5, C3×C4○D4, C6×D5, C4○D20, D5×C2×C6, C3×C4○D20

Smallest permutation representation of C3×C4○D20
On 120 points
Generators in S120
(1 82 39)(2 83 40)(3 84 21)(4 85 22)(5 86 23)(6 87 24)(7 88 25)(8 89 26)(9 90 27)(10 91 28)(11 92 29)(12 93 30)(13 94 31)(14 95 32)(15 96 33)(16 97 34)(17 98 35)(18 99 36)(19 100 37)(20 81 38)(41 105 65)(42 106 66)(43 107 67)(44 108 68)(45 109 69)(46 110 70)(47 111 71)(48 112 72)(49 113 73)(50 114 74)(51 115 75)(52 116 76)(53 117 77)(54 118 78)(55 119 79)(56 120 80)(57 101 61)(58 102 62)(59 103 63)(60 104 64)
(1 73 11 63)(2 74 12 64)(3 75 13 65)(4 76 14 66)(5 77 15 67)(6 78 16 68)(7 79 17 69)(8 80 18 70)(9 61 19 71)(10 62 20 72)(21 115 31 105)(22 116 32 106)(23 117 33 107)(24 118 34 108)(25 119 35 109)(26 120 36 110)(27 101 37 111)(28 102 38 112)(29 103 39 113)(30 104 40 114)(41 84 51 94)(42 85 52 95)(43 86 53 96)(44 87 54 97)(45 88 55 98)(46 89 56 99)(47 90 57 100)(48 91 58 81)(49 92 59 82)(50 93 60 83)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(37 40)(38 39)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 50)(48 49)(57 60)(58 59)(61 64)(62 63)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)(71 74)(72 73)(81 82)(83 100)(84 99)(85 98)(86 97)(87 96)(88 95)(89 94)(90 93)(91 92)(101 104)(102 103)(105 120)(106 119)(107 118)(108 117)(109 116)(110 115)(111 114)(112 113)

G:=sub<Sym(120)| (1,82,39)(2,83,40)(3,84,21)(4,85,22)(5,86,23)(6,87,24)(7,88,25)(8,89,26)(9,90,27)(10,91,28)(11,92,29)(12,93,30)(13,94,31)(14,95,32)(15,96,33)(16,97,34)(17,98,35)(18,99,36)(19,100,37)(20,81,38)(41,105,65)(42,106,66)(43,107,67)(44,108,68)(45,109,69)(46,110,70)(47,111,71)(48,112,72)(49,113,73)(50,114,74)(51,115,75)(52,116,76)(53,117,77)(54,118,78)(55,119,79)(56,120,80)(57,101,61)(58,102,62)(59,103,63)(60,104,64), (1,73,11,63)(2,74,12,64)(3,75,13,65)(4,76,14,66)(5,77,15,67)(6,78,16,68)(7,79,17,69)(8,80,18,70)(9,61,19,71)(10,62,20,72)(21,115,31,105)(22,116,32,106)(23,117,33,107)(24,118,34,108)(25,119,35,109)(26,120,36,110)(27,101,37,111)(28,102,38,112)(29,103,39,113)(30,104,40,114)(41,84,51,94)(42,85,52,95)(43,86,53,96)(44,87,54,97)(45,88,55,98)(46,89,56,99)(47,90,57,100)(48,91,58,81)(49,92,59,82)(50,93,60,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(57,60)(58,59)(61,64)(62,63)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(81,82)(83,100)(84,99)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(101,104)(102,103)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113)>;

G:=Group( (1,82,39)(2,83,40)(3,84,21)(4,85,22)(5,86,23)(6,87,24)(7,88,25)(8,89,26)(9,90,27)(10,91,28)(11,92,29)(12,93,30)(13,94,31)(14,95,32)(15,96,33)(16,97,34)(17,98,35)(18,99,36)(19,100,37)(20,81,38)(41,105,65)(42,106,66)(43,107,67)(44,108,68)(45,109,69)(46,110,70)(47,111,71)(48,112,72)(49,113,73)(50,114,74)(51,115,75)(52,116,76)(53,117,77)(54,118,78)(55,119,79)(56,120,80)(57,101,61)(58,102,62)(59,103,63)(60,104,64), (1,73,11,63)(2,74,12,64)(3,75,13,65)(4,76,14,66)(5,77,15,67)(6,78,16,68)(7,79,17,69)(8,80,18,70)(9,61,19,71)(10,62,20,72)(21,115,31,105)(22,116,32,106)(23,117,33,107)(24,118,34,108)(25,119,35,109)(26,120,36,110)(27,101,37,111)(28,102,38,112)(29,103,39,113)(30,104,40,114)(41,84,51,94)(42,85,52,95)(43,86,53,96)(44,87,54,97)(45,88,55,98)(46,89,56,99)(47,90,57,100)(48,91,58,81)(49,92,59,82)(50,93,60,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(57,60)(58,59)(61,64)(62,63)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(81,82)(83,100)(84,99)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(101,104)(102,103)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113) );

G=PermutationGroup([[(1,82,39),(2,83,40),(3,84,21),(4,85,22),(5,86,23),(6,87,24),(7,88,25),(8,89,26),(9,90,27),(10,91,28),(11,92,29),(12,93,30),(13,94,31),(14,95,32),(15,96,33),(16,97,34),(17,98,35),(18,99,36),(19,100,37),(20,81,38),(41,105,65),(42,106,66),(43,107,67),(44,108,68),(45,109,69),(46,110,70),(47,111,71),(48,112,72),(49,113,73),(50,114,74),(51,115,75),(52,116,76),(53,117,77),(54,118,78),(55,119,79),(56,120,80),(57,101,61),(58,102,62),(59,103,63),(60,104,64)], [(1,73,11,63),(2,74,12,64),(3,75,13,65),(4,76,14,66),(5,77,15,67),(6,78,16,68),(7,79,17,69),(8,80,18,70),(9,61,19,71),(10,62,20,72),(21,115,31,105),(22,116,32,106),(23,117,33,107),(24,118,34,108),(25,119,35,109),(26,120,36,110),(27,101,37,111),(28,102,38,112),(29,103,39,113),(30,104,40,114),(41,84,51,94),(42,85,52,95),(43,86,53,96),(44,87,54,97),(45,88,55,98),(46,89,56,99),(47,90,57,100),(48,91,58,81),(49,92,59,82),(50,93,60,83)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(37,40),(38,39),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,50),(48,49),(57,60),(58,59),(61,64),(62,63),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75),(71,74),(72,73),(81,82),(83,100),(84,99),(85,98),(86,97),(87,96),(88,95),(89,94),(90,93),(91,92),(101,104),(102,103),(105,120),(106,119),(107,118),(108,117),(109,116),(110,115),(111,114),(112,113)]])

C3×C4○D20 is a maximal subgroup of
C60.96D4  C60.97D4  D20.3Dic3  D20.2Dic3  D20.34D6  D2021D6  D2019D6  D20.37D6  D20.31D6  C60.63D4  D20.38D6  D20.39D6  D2024D6  D2026D6  D2029D6  C3×D5×C4○D4
C3×C4○D20 is a maximal quotient of
C12×Dic10  C12×D20  C12×C5⋊D4

78 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E5A5B6A6B6C6D6E6F6G6H10A···10F12A12B12C12D12E12F12G12H12I12J15A15B15C15D20A···20H30A···30L60A···60P
order122223344444556666666610···10121212121212121212121515151520···2030···3060···60
size1121010111121010221122101010102···21111221010101022222···22···22···2

78 irreducible representations

dim1111111111112222222222
type+++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D5C4○D4D10D10C3×D5C3×C4○D4C6×D5C6×D5C4○D20C3×C4○D20
kernelC3×C4○D20C3×Dic10D5×C12C3×D20C3×C5⋊D4C2×C60C4○D20Dic10C4×D5D20C5⋊D4C2×C20C2×C12C15C12C2×C6C2×C4C5C4C22C3C1
# reps11212122424222424484816

Matrix representation of C3×C4○D20 in GL2(𝔽61) generated by

470
047
,
110
011
,
732
292
,
732
2954
G:=sub<GL(2,GF(61))| [47,0,0,47],[11,0,0,11],[7,29,32,2],[7,29,32,54] >;

C3×C4○D20 in GAP, Magma, Sage, TeX

C_3\times C_4\circ D_{20}
% in TeX

G:=Group("C3xC4oD20");
// GroupNames label

G:=SmallGroup(240,158);
// by ID

G=gap.SmallGroup(240,158);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-5,151,506,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=d^2=1,c^10=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c^9>;
// generators/relations

׿
×
𝔽