Copied to
clipboard

G = C3×D4×D5order 240 = 24·3·5

Direct product of C3, D4 and D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D4×D5, D203C6, C126D10, C606C22, C30.42C23, C20⋊(C2×C6), C52(C6×D4), C41(C6×D5), (C5×D4)⋊2C6, (C4×D5)⋊1C6, (C2×C6)⋊4D10, C1514(C2×D4), C5⋊D41C6, (D5×C12)⋊6C2, (D4×C15)⋊5C2, D102(C2×C6), (C3×D20)⋊9C2, C222(C6×D5), (C2×C30)⋊6C22, Dic51(C2×C6), (C22×D5)⋊3C6, (C6×D5)⋊10C22, C10.5(C22×C6), C6.42(C22×D5), (C3×Dic5)⋊8C22, (D5×C2×C6)⋊6C2, C2.6(D5×C2×C6), (C2×C10)⋊2(C2×C6), (C3×C5⋊D4)⋊5C2, SmallGroup(240,159)

Series: Derived Chief Lower central Upper central

C1C10 — C3×D4×D5
C1C5C10C30C6×D5D5×C2×C6 — C3×D4×D5
C5C10 — C3×D4×D5
C1C6C3×D4

Generators and relations for C3×D4×D5
 G = < a,b,c,d,e | a3=b4=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 340 in 108 conjugacy classes, 50 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C2×C4, D4, D4, C23, D5, D5, C10, C10, C12, C12, C2×C6, C2×C6, C15, C2×D4, Dic5, C20, D10, D10, D10, C2×C10, C2×C12, C3×D4, C3×D4, C22×C6, C3×D5, C3×D5, C30, C30, C4×D5, D20, C5⋊D4, C5×D4, C22×D5, C6×D4, C3×Dic5, C60, C6×D5, C6×D5, C6×D5, C2×C30, D4×D5, D5×C12, C3×D20, C3×C5⋊D4, D4×C15, D5×C2×C6, C3×D4×D5
Quotients: C1, C2, C3, C22, C6, D4, C23, D5, C2×C6, C2×D4, D10, C3×D4, C22×C6, C3×D5, C22×D5, C6×D4, C6×D5, D4×D5, D5×C2×C6, C3×D4×D5

Smallest permutation representation of C3×D4×D5
On 60 points
Generators in S60
(1 24 14)(2 25 15)(3 21 11)(4 22 12)(5 23 13)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)
(1 34 9 39)(2 35 10 40)(3 31 6 36)(4 32 7 37)(5 33 8 38)(11 41 16 46)(12 42 17 47)(13 43 18 48)(14 44 19 49)(15 45 20 50)(21 51 26 56)(22 52 27 57)(23 53 28 58)(24 54 29 59)(25 55 30 60)
(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(42 45)(43 44)(47 50)(48 49)(52 55)(53 54)(57 60)(58 59)

G:=sub<Sym(60)| (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,34,9,39)(2,35,10,40)(3,31,6,36)(4,32,7,37)(5,33,8,38)(11,41,16,46)(12,42,17,47)(13,43,18,48)(14,44,19,49)(15,45,20,50)(21,51,26,56)(22,52,27,57)(23,53,28,58)(24,54,29,59)(25,55,30,60), (31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)>;

G:=Group( (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,34,9,39)(2,35,10,40)(3,31,6,36)(4,32,7,37)(5,33,8,38)(11,41,16,46)(12,42,17,47)(13,43,18,48)(14,44,19,49)(15,45,20,50)(21,51,26,56)(22,52,27,57)(23,53,28,58)(24,54,29,59)(25,55,30,60), (31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59) );

G=PermutationGroup([[(1,24,14),(2,25,15),(3,21,11),(4,22,12),(5,23,13),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50)], [(1,34,9,39),(2,35,10,40),(3,31,6,36),(4,32,7,37),(5,33,8,38),(11,41,16,46),(12,42,17,47),(13,43,18,48),(14,44,19,49),(15,45,20,50),(21,51,26,56),(22,52,27,57),(23,53,28,58),(24,54,29,59),(25,55,30,60)], [(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(42,45),(43,44),(47,50),(48,49),(52,55),(53,54),(57,60),(58,59)]])

C3×D4×D5 is a maximal subgroup of   D20⋊Dic3  D1210D10  D20.9D6  D2013D6  D2014D6

60 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B5A5B6A6B6C6D6E6F6G6H6I6J6K6L6M6N10A10B10C10D10E10F12A12B12C12D15A15B15C15D20A20B30A30B30C30D30E···30L60A60B60C60D
order1222222233445566666666666666101010101010121212121515151520203030303030···3060606060
size1122551010112102211222255551010101022444422101022224422224···44444

60 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D5D10D10C3×D4C3×D5C6×D5C6×D5D4×D5C3×D4×D5
kernelC3×D4×D5D5×C12C3×D20C3×C5⋊D4D4×C15D5×C2×C6D4×D5C4×D5D20C5⋊D4C5×D4C22×D5C3×D5C3×D4C12C2×C6D5D4C4C22C3C1
# reps1112122224242224444824

Matrix representation of C3×D4×D5 in GL4(𝔽61) generated by

47000
04700
00470
00047
,
60000
06000
006020
0061
,
1000
0100
00141
00060
,
0100
601700
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(61))| [47,0,0,0,0,47,0,0,0,0,47,0,0,0,0,47],[60,0,0,0,0,60,0,0,0,0,60,6,0,0,20,1],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,41,60],[0,60,0,0,1,17,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

C3×D4×D5 in GAP, Magma, Sage, TeX

C_3\times D_4\times D_5
% in TeX

G:=Group("C3xD4xD5");
// GroupNames label

G:=SmallGroup(240,159);
// by ID

G=gap.SmallGroup(240,159);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-5,260,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽