Copied to
clipboard

G = C4xS3xD5order 240 = 24·3·5

Direct product of C4, S3 and D5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4xS3xD5, C20:5D6, C12:5D10, C60:5C22, Dic5:5D6, D6.9D10, Dic3:5D10, D10.17D6, C30.11C23, Dic15:5C22, D30.12C22, (S3xC20):5C2, D15:2(C2xC4), (C4xD15):9C2, (D5xC12):5C2, C15:2(C22xC4), D30.C2:6C2, (D5xDic3):6C2, (S3xDic5):6C2, C6.11(C22xD5), (S3xC10).9C22, C10.11(C22xS3), (C5xDic3):3C22, (C3xDic5):3C22, (C6xD5).13C22, C5:2(S3xC2xC4), C3:1(C2xC4xD5), C2.1(C2xS3xD5), (C2xS3xD5).3C2, (C5xS3):2(C2xC4), (C3xD5):2(C2xC4), SmallGroup(240,135)

Series: Derived Chief Lower central Upper central

C1C15 — C4xS3xD5
C1C5C15C30C6xD5C2xS3xD5 — C4xS3xD5
C15 — C4xS3xD5
C1C4

Generators and relations for C4xS3xD5
 G = < a,b,c,d,e | a4=b3=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 448 in 108 conjugacy classes, 46 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, S3, C6, C6, C2xC4, C23, D5, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C15, C22xC4, Dic5, Dic5, C20, C20, D10, D10, C2xC10, C4xS3, C4xS3, C2xDic3, C2xC12, C22xS3, C5xS3, C3xD5, D15, C30, C4xD5, C4xD5, C2xDic5, C2xC20, C22xD5, S3xC2xC4, C5xDic3, C3xDic5, Dic15, C60, S3xD5, C6xD5, S3xC10, D30, C2xC4xD5, D5xDic3, S3xDic5, D30.C2, D5xC12, S3xC20, C4xD15, C2xS3xD5, C4xS3xD5
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D5, D6, C22xC4, D10, C4xS3, C22xS3, C4xD5, C22xD5, S3xC2xC4, S3xD5, C2xC4xD5, C2xS3xD5, C4xS3xD5

Smallest permutation representation of C4xS3xD5
On 60 points
Generators in S60
(1 49 19 34)(2 50 20 35)(3 46 16 31)(4 47 17 32)(5 48 18 33)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 26)(7 27)(8 28)(9 29)(10 30)(11 21)(12 22)(13 23)(14 24)(15 25)(31 46)(32 47)(33 48)(34 49)(35 50)(36 56)(37 57)(38 58)(39 59)(40 60)(41 51)(42 52)(43 53)(44 54)(45 55)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 21)(7 25)(8 24)(9 23)(10 22)(11 26)(12 30)(13 29)(14 28)(15 27)(31 46)(32 50)(33 49)(34 48)(35 47)(36 51)(37 55)(38 54)(39 53)(40 52)(41 56)(42 60)(43 59)(44 58)(45 57)

G:=sub<Sym(60)| (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,18)(2,17)(3,16)(4,20)(5,19)(6,21)(7,25)(8,24)(9,23)(10,22)(11,26)(12,30)(13,29)(14,28)(15,27)(31,46)(32,50)(33,49)(34,48)(35,47)(36,51)(37,55)(38,54)(39,53)(40,52)(41,56)(42,60)(43,59)(44,58)(45,57)>;

G:=Group( (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,19)(2,20)(3,16)(4,17)(5,18)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,18)(2,17)(3,16)(4,20)(5,19)(6,21)(7,25)(8,24)(9,23)(10,22)(11,26)(12,30)(13,29)(14,28)(15,27)(31,46)(32,50)(33,49)(34,48)(35,47)(36,51)(37,55)(38,54)(39,53)(40,52)(41,56)(42,60)(43,59)(44,58)(45,57) );

G=PermutationGroup([[(1,49,19,34),(2,50,20,35),(3,46,16,31),(4,47,17,32),(5,48,18,33),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,26),(7,27),(8,28),(9,29),(10,30),(11,21),(12,22),(13,23),(14,24),(15,25),(31,46),(32,47),(33,48),(34,49),(35,50),(36,56),(37,57),(38,58),(39,59),(40,60),(41,51),(42,52),(43,53),(44,54),(45,55)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,21),(7,25),(8,24),(9,23),(10,22),(11,26),(12,30),(13,29),(14,28),(15,27),(31,46),(32,50),(33,49),(34,48),(35,47),(36,51),(37,55),(38,54),(39,53),(40,52),(41,56),(42,60),(43,59),(44,58),(45,57)]])

C4xS3xD5 is a maximal subgroup of
C40:D6  C4:F5:3S3  (C4xS3):F5  D15:M4(2)  C5:C8:D6  D20:24D6  D30.C23  D20:16D6
C4xS3xD5 is a maximal quotient of
C40:D6  C40.54D6  C40.34D6  C40.55D6  C40.35D6  Dic5:5Dic6  Dic3:5Dic10  Dic15:5Q8  (D5xDic3):C4  D10.19(C4xS3)  Dic3:4D20  Dic15:13D4  D6.(C4xD5)  (S3xDic5):C4  D30.C2:C4  D30.23(C2xC4)  D30.Q8  Dic5:4D12  Dic15:14D4  D6:(C4xD5)  C15:17(C4xD4)  Dic15:9D4  C15:20(C4xD4)  C15:22(C4xD4)  D30.27D4

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H5A5B6A6B6C10A10B10C10D10E10F12A12B12C12D15A15B20A20B20C20D20E20F20G20H30A30B60A60B60C60D
order12222222344444444556661010101010101212121215152020202020202020303060606060
size11335515152113355151522210102266662210104422226666444444

48 irreducible representations

dim1111111112222222222444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4S3D5D6D6D6D10D10D10C4xS3C4xD5S3xD5C2xS3xD5C4xS3xD5
kernelC4xS3xD5D5xDic3S3xDic5D30.C2D5xC12S3xC20C4xD15C2xS3xD5S3xD5C4xD5C4xS3Dic5C20D10Dic3C12D6D5S3C4C2C1
# reps1111111181211122248224

Matrix representation of C4xS3xD5 in GL4(F61) generated by

50000
05000
00110
00011
,
1000
0100
006060
0010
,
60000
06000
00600
0011
,
0100
604300
0010
0001
,
60000
18100
00600
00060
G:=sub<GL(4,GF(61))| [50,0,0,0,0,50,0,0,0,0,11,0,0,0,0,11],[1,0,0,0,0,1,0,0,0,0,60,1,0,0,60,0],[60,0,0,0,0,60,0,0,0,0,60,1,0,0,0,1],[0,60,0,0,1,43,0,0,0,0,1,0,0,0,0,1],[60,18,0,0,0,1,0,0,0,0,60,0,0,0,0,60] >;

C4xS3xD5 in GAP, Magma, Sage, TeX

C_4\times S_3\times D_5
% in TeX

G:=Group("C4xS3xD5");
// GroupNames label

G:=SmallGroup(240,135);
// by ID

G=gap.SmallGroup(240,135);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,50,490,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<