Extensions 1→N→G→Q→1 with N=C52C8 and Q=S3

Direct product G=N×Q with N=C52C8 and Q=S3

Semidirect products G=N:Q with N=C52C8 and Q=S3
extensionφ:Q→Out NdρLabelID
C52C81S3 = C5⋊D24φ: S3/C3C2 ⊆ Out C52C81204+C5:2C8:1S3240,15
C52C82S3 = D12.D5φ: S3/C3C2 ⊆ Out C52C81204-C5:2C8:2S3240,20
C52C83S3 = Dic6⋊D5φ: S3/C3C2 ⊆ Out C52C81204+C5:2C8:3S3240,21
C52C84S3 = D6.Dic5φ: S3/C3C2 ⊆ Out C52C81204C5:2C8:4S3240,11
C52C85S3 = D30.5C4φ: S3/C3C2 ⊆ Out C52C81204C5:2C8:5S3240,12
C52C86S3 = D152C8φ: trivial image1204C5:2C8:6S3240,9

Non-split extensions G=N.Q with N=C52C8 and Q=S3
extensionφ:Q→Out NdρLabelID
C52C8.1S3 = C5⋊Dic12φ: S3/C3C2 ⊆ Out C52C82404-C5:2C8.1S3240,24
C52C8.2S3 = C15⋊C16φ: S3/C3C2 ⊆ Out C52C82404C5:2C8.2S3240,6