metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊2D24, C15⋊3D8, D12⋊1D5, D60⋊8C2, C30.3D4, C20.2D6, C10.6D12, C12.22D10, C60.15C22, C5⋊2C8⋊1S3, C3⋊1(D4⋊D5), C4.8(S3×D5), (C5×D12)⋊1C2, C6.1(C5⋊D4), C2.4(C5⋊D12), (C3×C5⋊2C8)⋊1C2, SmallGroup(240,15)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5⋊D24
G = < a,b,c | a5=b24=c2=1, bab-1=cac=a-1, cbc=b-1 >
(1 99 71 88 47)(2 48 89 72 100)(3 101 49 90 25)(4 26 91 50 102)(5 103 51 92 27)(6 28 93 52 104)(7 105 53 94 29)(8 30 95 54 106)(9 107 55 96 31)(10 32 73 56 108)(11 109 57 74 33)(12 34 75 58 110)(13 111 59 76 35)(14 36 77 60 112)(15 113 61 78 37)(16 38 79 62 114)(17 115 63 80 39)(18 40 81 64 116)(19 117 65 82 41)(20 42 83 66 118)(21 119 67 84 43)(22 44 85 68 120)(23 97 69 86 45)(24 46 87 70 98)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 9)(2 8)(3 7)(4 6)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(25 105)(26 104)(27 103)(28 102)(29 101)(30 100)(31 99)(32 98)(33 97)(34 120)(35 119)(36 118)(37 117)(38 116)(39 115)(40 114)(41 113)(42 112)(43 111)(44 110)(45 109)(46 108)(47 107)(48 106)(49 94)(50 93)(51 92)(52 91)(53 90)(54 89)(55 88)(56 87)(57 86)(58 85)(59 84)(60 83)(61 82)(62 81)(63 80)(64 79)(65 78)(66 77)(67 76)(68 75)(69 74)(70 73)(71 96)(72 95)
G:=sub<Sym(120)| (1,99,71,88,47)(2,48,89,72,100)(3,101,49,90,25)(4,26,91,50,102)(5,103,51,92,27)(6,28,93,52,104)(7,105,53,94,29)(8,30,95,54,106)(9,107,55,96,31)(10,32,73,56,108)(11,109,57,74,33)(12,34,75,58,110)(13,111,59,76,35)(14,36,77,60,112)(15,113,61,78,37)(16,38,79,62,114)(17,115,63,80,39)(18,40,81,64,116)(19,117,65,82,41)(20,42,83,66,118)(21,119,67,84,43)(22,44,85,68,120)(23,97,69,86,45)(24,46,87,70,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,9)(2,8)(3,7)(4,6)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(25,105)(26,104)(27,103)(28,102)(29,101)(30,100)(31,99)(32,98)(33,97)(34,120)(35,119)(36,118)(37,117)(38,116)(39,115)(40,114)(41,113)(42,112)(43,111)(44,110)(45,109)(46,108)(47,107)(48,106)(49,94)(50,93)(51,92)(52,91)(53,90)(54,89)(55,88)(56,87)(57,86)(58,85)(59,84)(60,83)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,96)(72,95)>;
G:=Group( (1,99,71,88,47)(2,48,89,72,100)(3,101,49,90,25)(4,26,91,50,102)(5,103,51,92,27)(6,28,93,52,104)(7,105,53,94,29)(8,30,95,54,106)(9,107,55,96,31)(10,32,73,56,108)(11,109,57,74,33)(12,34,75,58,110)(13,111,59,76,35)(14,36,77,60,112)(15,113,61,78,37)(16,38,79,62,114)(17,115,63,80,39)(18,40,81,64,116)(19,117,65,82,41)(20,42,83,66,118)(21,119,67,84,43)(22,44,85,68,120)(23,97,69,86,45)(24,46,87,70,98), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,9)(2,8)(3,7)(4,6)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(25,105)(26,104)(27,103)(28,102)(29,101)(30,100)(31,99)(32,98)(33,97)(34,120)(35,119)(36,118)(37,117)(38,116)(39,115)(40,114)(41,113)(42,112)(43,111)(44,110)(45,109)(46,108)(47,107)(48,106)(49,94)(50,93)(51,92)(52,91)(53,90)(54,89)(55,88)(56,87)(57,86)(58,85)(59,84)(60,83)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,96)(72,95) );
G=PermutationGroup([[(1,99,71,88,47),(2,48,89,72,100),(3,101,49,90,25),(4,26,91,50,102),(5,103,51,92,27),(6,28,93,52,104),(7,105,53,94,29),(8,30,95,54,106),(9,107,55,96,31),(10,32,73,56,108),(11,109,57,74,33),(12,34,75,58,110),(13,111,59,76,35),(14,36,77,60,112),(15,113,61,78,37),(16,38,79,62,114),(17,115,63,80,39),(18,40,81,64,116),(19,117,65,82,41),(20,42,83,66,118),(21,119,67,84,43),(22,44,85,68,120),(23,97,69,86,45),(24,46,87,70,98)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,9),(2,8),(3,7),(4,6),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(25,105),(26,104),(27,103),(28,102),(29,101),(30,100),(31,99),(32,98),(33,97),(34,120),(35,119),(36,118),(37,117),(38,116),(39,115),(40,114),(41,113),(42,112),(43,111),(44,110),(45,109),(46,108),(47,107),(48,106),(49,94),(50,93),(51,92),(52,91),(53,90),(54,89),(55,88),(56,87),(57,86),(58,85),(59,84),(60,83),(61,82),(62,81),(63,80),(64,79),(65,78),(66,77),(67,76),(68,75),(69,74),(70,73),(71,96),(72,95)]])
C5⋊D24 is a maximal subgroup of
D5×D24 C24⋊D10 D24⋊D5 C40.31D6 C20.60D12 D60⋊36C22 C60.38D4 S3×D4⋊D5 D15⋊D8 D12.9D10 D12⋊5D10 D12⋊D10 D60⋊C22 Dic10.27D6 D12.D10
C5⋊D24 is a maximal quotient of
C5⋊D48 D24.D5 Dic12⋊D5 C5⋊Dic24 C10.D24 D60⋊15C4 C60.8Q8
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 5A | 5B | 6 | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 12A | 12B | 15A | 15B | 20A | 20B | 24A | 24B | 24C | 24D | 30A | 30B | 60A | 60B | 60C | 60D |
order | 1 | 2 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 15 | 15 | 20 | 20 | 24 | 24 | 24 | 24 | 30 | 30 | 60 | 60 | 60 | 60 |
size | 1 | 1 | 12 | 60 | 2 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 12 | 12 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | S3 | D4 | D5 | D6 | D8 | D10 | D12 | C5⋊D4 | D24 | S3×D5 | D4⋊D5 | C5⋊D12 | C5⋊D24 |
kernel | C5⋊D24 | C3×C5⋊2C8 | C5×D12 | D60 | C5⋊2C8 | C30 | D12 | C20 | C15 | C12 | C10 | C6 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 |
Matrix representation of C5⋊D24 ►in GL6(𝔽241)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 1 | 0 | 0 |
0 | 0 | 50 | 190 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 129 | 0 | 0 | 0 | 0 |
170 | 219 | 0 | 0 | 0 | 0 |
0 | 0 | 69 | 27 | 0 | 0 |
0 | 0 | 20 | 172 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 44 |
0 | 0 | 0 | 0 | 115 | 56 |
1 | 0 | 0 | 0 | 0 | 0 |
125 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 51 | 1 | 0 | 0 |
0 | 0 | 51 | 190 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 174 | 1 |
G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,50,0,0,0,0,1,190,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,170,0,0,0,0,129,219,0,0,0,0,0,0,69,20,0,0,0,0,27,172,0,0,0,0,0,0,0,115,0,0,0,0,44,56],[1,125,0,0,0,0,0,240,0,0,0,0,0,0,51,51,0,0,0,0,1,190,0,0,0,0,0,0,240,174,0,0,0,0,0,1] >;
C5⋊D24 in GAP, Magma, Sage, TeX
C_5\rtimes D_{24}
% in TeX
G:=Group("C5:D24");
// GroupNames label
G:=SmallGroup(240,15);
// by ID
G=gap.SmallGroup(240,15);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,73,116,50,490,6917]);
// Polycyclic
G:=Group<a,b,c|a^5=b^24=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export