Extensions 1→N→G→Q→1 with N=C6×Dic5 and Q=C2

Direct product G=N×Q with N=C6×Dic5 and Q=C2
dρLabelID
C2×C6×Dic5240C2xC6xDic5240,163

Semidirect products G=N:Q with N=C6×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×Dic5)⋊1C2 = D6⋊Dic5φ: C2/C1C2 ⊆ Out C6×Dic5120(C6xDic5):1C2240,27
(C6×Dic5)⋊2C2 = D304C4φ: C2/C1C2 ⊆ Out C6×Dic5120(C6xDic5):2C2240,28
(C6×Dic5)⋊3C2 = C2×S3×Dic5φ: C2/C1C2 ⊆ Out C6×Dic5120(C6xDic5):3C2240,142
(C6×Dic5)⋊4C2 = Dic3.D10φ: C2/C1C2 ⊆ Out C6×Dic51204(C6xDic5):4C2240,143
(C6×Dic5)⋊5C2 = C2×D30.C2φ: C2/C1C2 ⊆ Out C6×Dic5120(C6xDic5):5C2240,144
(C6×Dic5)⋊6C2 = C2×C5⋊D12φ: C2/C1C2 ⊆ Out C6×Dic5120(C6xDic5):6C2240,147
(C6×Dic5)⋊7C2 = C3×D10⋊C4φ: C2/C1C2 ⊆ Out C6×Dic5120(C6xDic5):7C2240,43
(C6×Dic5)⋊8C2 = C3×C23.D5φ: C2/C1C2 ⊆ Out C6×Dic5120(C6xDic5):8C2240,48
(C6×Dic5)⋊9C2 = C3×D42D5φ: C2/C1C2 ⊆ Out C6×Dic51204(C6xDic5):9C2240,160
(C6×Dic5)⋊10C2 = C6×C5⋊D4φ: C2/C1C2 ⊆ Out C6×Dic5120(C6xDic5):10C2240,164
(C6×Dic5)⋊11C2 = D5×C2×C12φ: trivial image120(C6xDic5):11C2240,156

Non-split extensions G=N.Q with N=C6×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×Dic5).1C2 = Dic3×Dic5φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).1C2240,25
(C6×Dic5).2C2 = C30.Q8φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).2C2240,29
(C6×Dic5).3C2 = Dic155C4φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).3C2240,30
(C6×Dic5).4C2 = C6.Dic10φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).4C2240,31
(C6×Dic5).5C2 = C2×C15⋊Q8φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).5C2240,148
(C6×Dic5).6C2 = C3×C10.D4φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).6C2240,41
(C6×Dic5).7C2 = C3×C4⋊Dic5φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).7C2240,42
(C6×Dic5).8C2 = C6×Dic10φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).8C2240,155
(C6×Dic5).9C2 = C2×C15⋊C8φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).9C2240,122
(C6×Dic5).10C2 = C158M4(2)φ: C2/C1C2 ⊆ Out C6×Dic51204(C6xDic5).10C2240,123
(C6×Dic5).11C2 = C6×C5⋊C8φ: C2/C1C2 ⊆ Out C6×Dic5240(C6xDic5).11C2240,115
(C6×Dic5).12C2 = C3×C22.F5φ: C2/C1C2 ⊆ Out C6×Dic51204(C6xDic5).12C2240,116
(C6×Dic5).13C2 = C12×Dic5φ: trivial image240(C6xDic5).13C2240,40

׿
×
𝔽