Copied to
clipboard

G = D30:4C4order 240 = 24·3·5

2nd semidirect product of D30 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D30:4C4, C30.15D4, C6.11D20, C10.11D12, C5:2(D6:C4), C6.3(C4xD5), (C2xC6).8D10, (C2xC10).8D6, C10.10(C4xS3), C15:6(C22:C4), C30.31(C2xC4), (C2xDic3):2D5, (C2xDic5):2S3, (C6xDic5):2C2, C6.5(C5:D4), C3:1(D10:C4), C22.7(S3xD5), (C10xDic3):2C2, C10.5(C3:D4), C2.2(C5:D12), C2.2(C3:D20), (C2xC30).5C22, C2.4(D30.C2), (C22xD15).2C2, SmallGroup(240,28)

Series: Derived Chief Lower central Upper central

C1C30 — D30:4C4
C1C5C15C30C2xC30C6xDic5 — D30:4C4
C15C30 — D30:4C4
C1C22

Generators and relations for D30:4C4
 G = < a,b,c | a30=b2=c4=1, bab=a-1, cac-1=a11, cbc-1=a25b >

Subgroups: 368 in 68 conjugacy classes, 28 normal (26 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C2xC4, C23, D5, C10, Dic3, C12, D6, C2xC6, C15, C22:C4, Dic5, C20, D10, C2xC10, C2xDic3, C2xC12, C22xS3, D15, C30, C2xDic5, C2xC20, C22xD5, D6:C4, C5xDic3, C3xDic5, D30, D30, C2xC30, D10:C4, C6xDic5, C10xDic3, C22xD15, D30:4C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D5, D6, C22:C4, D10, C4xS3, D12, C3:D4, C4xD5, D20, C5:D4, D6:C4, S3xD5, D10:C4, D30.C2, C3:D20, C5:D12, D30:4C4

Smallest permutation representation of D30:4C4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(51 60)(52 59)(53 58)(54 57)(55 56)(61 85)(62 84)(63 83)(64 82)(65 81)(66 80)(67 79)(68 78)(69 77)(70 76)(71 75)(72 74)(86 90)(87 89)(91 95)(92 94)(96 120)(97 119)(98 118)(99 117)(100 116)(101 115)(102 114)(103 113)(104 112)(105 111)(106 110)(107 109)
(1 101 56 66)(2 112 57 77)(3 93 58 88)(4 104 59 69)(5 115 60 80)(6 96 31 61)(7 107 32 72)(8 118 33 83)(9 99 34 64)(10 110 35 75)(11 91 36 86)(12 102 37 67)(13 113 38 78)(14 94 39 89)(15 105 40 70)(16 116 41 81)(17 97 42 62)(18 108 43 73)(19 119 44 84)(20 100 45 65)(21 111 46 76)(22 92 47 87)(23 103 48 68)(24 114 49 79)(25 95 50 90)(26 106 51 71)(27 117 52 82)(28 98 53 63)(29 109 54 74)(30 120 55 85)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(51,60)(52,59)(53,58)(54,57)(55,56)(61,85)(62,84)(63,83)(64,82)(65,81)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74)(86,90)(87,89)(91,95)(92,94)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109), (1,101,56,66)(2,112,57,77)(3,93,58,88)(4,104,59,69)(5,115,60,80)(6,96,31,61)(7,107,32,72)(8,118,33,83)(9,99,34,64)(10,110,35,75)(11,91,36,86)(12,102,37,67)(13,113,38,78)(14,94,39,89)(15,105,40,70)(16,116,41,81)(17,97,42,62)(18,108,43,73)(19,119,44,84)(20,100,45,65)(21,111,46,76)(22,92,47,87)(23,103,48,68)(24,114,49,79)(25,95,50,90)(26,106,51,71)(27,117,52,82)(28,98,53,63)(29,109,54,74)(30,120,55,85)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(51,60)(52,59)(53,58)(54,57)(55,56)(61,85)(62,84)(63,83)(64,82)(65,81)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74)(86,90)(87,89)(91,95)(92,94)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109), (1,101,56,66)(2,112,57,77)(3,93,58,88)(4,104,59,69)(5,115,60,80)(6,96,31,61)(7,107,32,72)(8,118,33,83)(9,99,34,64)(10,110,35,75)(11,91,36,86)(12,102,37,67)(13,113,38,78)(14,94,39,89)(15,105,40,70)(16,116,41,81)(17,97,42,62)(18,108,43,73)(19,119,44,84)(20,100,45,65)(21,111,46,76)(22,92,47,87)(23,103,48,68)(24,114,49,79)(25,95,50,90)(26,106,51,71)(27,117,52,82)(28,98,53,63)(29,109,54,74)(30,120,55,85) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(51,60),(52,59),(53,58),(54,57),(55,56),(61,85),(62,84),(63,83),(64,82),(65,81),(66,80),(67,79),(68,78),(69,77),(70,76),(71,75),(72,74),(86,90),(87,89),(91,95),(92,94),(96,120),(97,119),(98,118),(99,117),(100,116),(101,115),(102,114),(103,113),(104,112),(105,111),(106,110),(107,109)], [(1,101,56,66),(2,112,57,77),(3,93,58,88),(4,104,59,69),(5,115,60,80),(6,96,31,61),(7,107,32,72),(8,118,33,83),(9,99,34,64),(10,110,35,75),(11,91,36,86),(12,102,37,67),(13,113,38,78),(14,94,39,89),(15,105,40,70),(16,116,41,81),(17,97,42,62),(18,108,43,73),(19,119,44,84),(20,100,45,65),(21,111,46,76),(22,92,47,87),(23,103,48,68),(24,114,49,79),(25,95,50,90),(26,106,51,71),(27,117,52,82),(28,98,53,63),(29,109,54,74),(30,120,55,85)]])

D30:4C4 is a maximal subgroup of
(C2xC20).D6  C4:Dic3:D5  C4:Dic5:S3  (C4xD15):8C4  Dic3:C4:D5  Dic5.8D12  D6:Dic5:C2  Dic3.D20  D30.34D4  D30.35D4  C60.47D4  C60.70D4  D30:8Q8  C10.D4:S3  D30:9Q8  (C4xD15):10C4  (C4xDic5):S3  D30:10Q8  Dic15:13D4  D30.C2:C4  D30.23(C2xC4)  Dic15:14D4  D30:Q8  D10.16D12  D60:17C4  D30:2Q8  D30:D4  D30:3Q8  D6.D20  D60:14C4  D30:4Q8  D30.6D4  C4xC3:D20  C4xC5:D12  C12:7D20  (C2xDic6):D5  D30:2D4  C60:6D4  D5xD6:C4  S3xD10:C4  D30:5D4  Dic15.19D4  C10.(C2xD12)  C6.D4:D5  Dic15:3D4  C15:26(C4xD4)  C15:28(C4xD4)  Dic15:4D4  D30.45D4  D30.16D4  (C2xC10):4D12  (C2xC6):D20  D30:18D4  D30:19D4  D30:8D4
D30:4C4 is a maximal quotient of
D30:4C8  C60.29D4  C60.31D4  D60:12C4  D60:15C4  Dic30:12C4  Dic30:15C4  D60:13C4  D60:16C4  C30.24C42  C15:9(C23:C4)

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D5A5B6A6B6C10A···10F12A12B12C12D15A15B20A···20H30A···30F
order122222344445566610···1012121212151520···2030···30
size111130302661010222222···210101010446···64···4

42 irreducible representations

dim11111222222222224444
type+++++++++++++++
imageC1C2C2C2C4S3D4D5D6D10C4xS3D12C3:D4C4xD5D20C5:D4S3xD5D30.C2C3:D20C5:D12
kernelD30:4C4C6xDic5C10xDic3C22xD15D30C2xDic5C30C2xDic3C2xC10C2xC6C10C10C10C6C6C6C22C2C2C2
# reps11114122122224442222

Matrix representation of D30:4C4 in GL4(F61) generated by

0100
606000
00431
00421
,
0100
1000
00044
00430
,
50000
111100
00257
005036
G:=sub<GL(4,GF(61))| [0,60,0,0,1,60,0,0,0,0,43,42,0,0,1,1],[0,1,0,0,1,0,0,0,0,0,0,43,0,0,44,0],[50,11,0,0,0,11,0,0,0,0,25,50,0,0,7,36] >;

D30:4C4 in GAP, Magma, Sage, TeX

D_{30}\rtimes_4C_4
% in TeX

G:=Group("D30:4C4");
// GroupNames label

G:=SmallGroup(240,28);
// by ID

G=gap.SmallGroup(240,28);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,121,79,490,6917]);
// Polycyclic

G:=Group<a,b,c|a^30=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^25*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<