Copied to
clipboard

G = C2×D30.C2order 240 = 24·3·5

Direct product of C2 and D30.C2

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×D30.C2, D305C4, Dic56D6, Dic36D10, C30.20C23, D30.14C22, C61(C4×D5), C102(C4×S3), C306(C2×C4), D153(C2×C4), C157(C22×C4), (C2×Dic3)⋊5D5, (C2×Dic5)⋊5S3, (C6×Dic5)⋊5C2, (C2×C6).15D10, (C2×C10).15D6, (C10×Dic3)⋊5C2, C6.20(C22×D5), C22.13(S3×D5), (C2×C30).14C22, C10.20(C22×S3), (C5×Dic3)⋊6C22, (C3×Dic5)⋊6C22, (C22×D15).3C2, C53(S3×C2×C4), C32(C2×C4×D5), C2.4(C2×S3×D5), SmallGroup(240,144)

Series: Derived Chief Lower central Upper central

C1C15 — C2×D30.C2
C1C5C15C30C3×Dic5D30.C2 — C2×D30.C2
C15 — C2×D30.C2
C1C22

Generators and relations for C2×D30.C2
 G = < a,b,c,d | a2=b30=c2=1, d2=b15, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b19, dcd-1=b18c >

Subgroups: 464 in 108 conjugacy classes, 48 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C22×C4, Dic5, C20, D10, C2×C10, C4×S3, C2×Dic3, C2×C12, C22×S3, D15, C30, C30, C4×D5, C2×Dic5, C2×C20, C22×D5, S3×C2×C4, C5×Dic3, C3×Dic5, D30, C2×C30, C2×C4×D5, D30.C2, C6×Dic5, C10×Dic3, C22×D15, C2×D30.C2
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D5, D6, C22×C4, D10, C4×S3, C22×S3, C4×D5, C22×D5, S3×C2×C4, S3×D5, C2×C4×D5, D30.C2, C2×S3×D5, C2×D30.C2

Smallest permutation representation of C2×D30.C2
On 120 points
Generators in S120
(1 58)(2 59)(3 60)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(61 105)(62 106)(63 107)(64 108)(65 109)(66 110)(67 111)(68 112)(69 113)(70 114)(71 115)(72 116)(73 117)(74 118)(75 119)(76 120)(77 91)(78 92)(79 93)(80 94)(81 95)(82 96)(83 97)(84 98)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 52)(22 51)(23 50)(24 49)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(61 103)(62 102)(63 101)(64 100)(65 99)(66 98)(67 97)(68 96)(69 95)(70 94)(71 93)(72 92)(73 91)(74 120)(75 119)(76 118)(77 117)(78 116)(79 115)(80 114)(81 113)(82 112)(83 111)(84 110)(85 109)(86 108)(87 107)(88 106)(89 105)(90 104)
(1 97 16 112)(2 116 17 101)(3 105 18 120)(4 94 19 109)(5 113 20 98)(6 102 21 117)(7 91 22 106)(8 110 23 95)(9 99 24 114)(10 118 25 103)(11 107 26 92)(12 96 27 111)(13 115 28 100)(14 104 29 119)(15 93 30 108)(31 80 46 65)(32 69 47 84)(33 88 48 73)(34 77 49 62)(35 66 50 81)(36 85 51 70)(37 74 52 89)(38 63 53 78)(39 82 54 67)(40 71 55 86)(41 90 56 75)(42 79 57 64)(43 68 58 83)(44 87 59 72)(45 76 60 61)

G:=sub<Sym(120)| (1,58)(2,59)(3,60)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(61,103)(62,102)(63,101)(64,100)(65,99)(66,98)(67,97)(68,96)(69,95)(70,94)(71,93)(72,92)(73,91)(74,120)(75,119)(76,118)(77,117)(78,116)(79,115)(80,114)(81,113)(82,112)(83,111)(84,110)(85,109)(86,108)(87,107)(88,106)(89,105)(90,104), (1,97,16,112)(2,116,17,101)(3,105,18,120)(4,94,19,109)(5,113,20,98)(6,102,21,117)(7,91,22,106)(8,110,23,95)(9,99,24,114)(10,118,25,103)(11,107,26,92)(12,96,27,111)(13,115,28,100)(14,104,29,119)(15,93,30,108)(31,80,46,65)(32,69,47,84)(33,88,48,73)(34,77,49,62)(35,66,50,81)(36,85,51,70)(37,74,52,89)(38,63,53,78)(39,82,54,67)(40,71,55,86)(41,90,56,75)(42,79,57,64)(43,68,58,83)(44,87,59,72)(45,76,60,61)>;

G:=Group( (1,58)(2,59)(3,60)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(61,103)(62,102)(63,101)(64,100)(65,99)(66,98)(67,97)(68,96)(69,95)(70,94)(71,93)(72,92)(73,91)(74,120)(75,119)(76,118)(77,117)(78,116)(79,115)(80,114)(81,113)(82,112)(83,111)(84,110)(85,109)(86,108)(87,107)(88,106)(89,105)(90,104), (1,97,16,112)(2,116,17,101)(3,105,18,120)(4,94,19,109)(5,113,20,98)(6,102,21,117)(7,91,22,106)(8,110,23,95)(9,99,24,114)(10,118,25,103)(11,107,26,92)(12,96,27,111)(13,115,28,100)(14,104,29,119)(15,93,30,108)(31,80,46,65)(32,69,47,84)(33,88,48,73)(34,77,49,62)(35,66,50,81)(36,85,51,70)(37,74,52,89)(38,63,53,78)(39,82,54,67)(40,71,55,86)(41,90,56,75)(42,79,57,64)(43,68,58,83)(44,87,59,72)(45,76,60,61) );

G=PermutationGroup([[(1,58),(2,59),(3,60),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(61,105),(62,106),(63,107),(64,108),(65,109),(66,110),(67,111),(68,112),(69,113),(70,114),(71,115),(72,116),(73,117),(74,118),(75,119),(76,120),(77,91),(78,92),(79,93),(80,94),(81,95),(82,96),(83,97),(84,98),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,52),(22,51),(23,50),(24,49),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(61,103),(62,102),(63,101),(64,100),(65,99),(66,98),(67,97),(68,96),(69,95),(70,94),(71,93),(72,92),(73,91),(74,120),(75,119),(76,118),(77,117),(78,116),(79,115),(80,114),(81,113),(82,112),(83,111),(84,110),(85,109),(86,108),(87,107),(88,106),(89,105),(90,104)], [(1,97,16,112),(2,116,17,101),(3,105,18,120),(4,94,19,109),(5,113,20,98),(6,102,21,117),(7,91,22,106),(8,110,23,95),(9,99,24,114),(10,118,25,103),(11,107,26,92),(12,96,27,111),(13,115,28,100),(14,104,29,119),(15,93,30,108),(31,80,46,65),(32,69,47,84),(33,88,48,73),(34,77,49,62),(35,66,50,81),(36,85,51,70),(37,74,52,89),(38,63,53,78),(39,82,54,67),(40,71,55,86),(41,90,56,75),(42,79,57,64),(43,68,58,83),(44,87,59,72),(45,76,60,61)]])

C2×D30.C2 is a maximal subgroup of
D30⋊C8  D30.D4  Dic34D20  D30.C2⋊C4  D30.23(C2×C4)  D30.Q8  Dic54D12  D30⋊Q8  D6017C4  D302Q8  D30⋊D4  D303Q8  D6014C4  D304Q8  D30.6D4  D30.2Q8  D30.7D4  C1520(C4×D4)  C1522(C4×D4)  D302D4  D30.27D4  D306D4  C1526(C4×D4)  C1528(C4×D4)  D307D4  D30.45D4  D30.16D4  D152M4(2)  S3×C2×C4×D5  D30.C23
C2×D30.C2 is a maximal quotient of
D60.5C4  D60.4C4  D154M4(2)  Dic3017C4  Dic3014C4  (C4×D15)⋊8C4  (C4×D15)⋊10C4  D6017C4  D6014C4  D30.2Q8  C2×Dic3×Dic5  C23.48(S3×D5)  C1526(C4×D4)  C1528(C4×D4)  D30.45D4

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H5A5B6A6B6C10A···10F12A12B12C12D15A15B20A···20H30A···30F
order122222223444444445566610···1012121212151520···2030···30
size111115151515233335555222222···210101010446···64···4

48 irreducible representations

dim11111122222222444
type++++++++++++++
imageC1C2C2C2C2C4S3D5D6D6D10D10C4×S3C4×D5S3×D5D30.C2C2×S3×D5
kernelC2×D30.C2D30.C2C6×Dic5C10×Dic3C22×D15D30C2×Dic5C2×Dic3Dic5C2×C10Dic3C2×C6C10C6C22C2C2
# reps14111812214248242

Matrix representation of C2×D30.C2 in GL5(𝔽61)

600000
01000
00100
00010
00001
,
10000
0434200
01100
00011
000600
,
10000
0604200
00100
00010
0006060
,
600000
0151500
0504600
000500
000050

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,43,1,0,0,0,42,1,0,0,0,0,0,1,60,0,0,0,1,0],[1,0,0,0,0,0,60,0,0,0,0,42,1,0,0,0,0,0,1,60,0,0,0,0,60],[60,0,0,0,0,0,15,50,0,0,0,15,46,0,0,0,0,0,50,0,0,0,0,0,50] >;

C2×D30.C2 in GAP, Magma, Sage, TeX

C_2\times D_{30}.C_2
% in TeX

G:=Group("C2xD30.C2");
// GroupNames label

G:=SmallGroup(240,144);
// by ID

G=gap.SmallGroup(240,144);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,55,490,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^30=c^2=1,d^2=b^15,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^19,d*c*d^-1=b^18*c>;
// generators/relations

׿
×
𝔽