Extensions 1→N→G→Q→1 with N=C5xDic6 and Q=C2

Direct product G=NxQ with N=C5xDic6 and Q=C2
dρLabelID
C10xDic6240C10xDic6240,165

Semidirect products G=N:Q with N=C5xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xDic6):1C2 = Dic6:D5φ: C2/C1C2 ⊆ Out C5xDic61204+(C5xDic6):1C2240,21
(C5xDic6):2C2 = D5xDic6φ: C2/C1C2 ⊆ Out C5xDic61204-(C5xDic6):2C2240,125
(C5xDic6):3C2 = C12.28D10φ: C2/C1C2 ⊆ Out C5xDic61204+(C5xDic6):3C2240,134
(C5xDic6):4C2 = C30.D4φ: C2/C1C2 ⊆ Out C5xDic61204(C5xDic6):4C2240,16
(C5xDic6):5C2 = D20:S3φ: C2/C1C2 ⊆ Out C5xDic61204(C5xDic6):5C2240,127
(C5xDic6):6C2 = D15:Q8φ: C2/C1C2 ⊆ Out C5xDic61204(C5xDic6):6C2240,131
(C5xDic6):7C2 = C5xC24:C2φ: C2/C1C2 ⊆ Out C5xDic61202(C5xDic6):7C2240,51
(C5xDic6):8C2 = C5xD4.S3φ: C2/C1C2 ⊆ Out C5xDic61204(C5xDic6):8C2240,61
(C5xDic6):9C2 = C5xD4:2S3φ: C2/C1C2 ⊆ Out C5xDic61204(C5xDic6):9C2240,170
(C5xDic6):10C2 = C5xS3xQ8φ: C2/C1C2 ⊆ Out C5xDic61204(C5xDic6):10C2240,171
(C5xDic6):11C2 = C5xC4oD12φ: trivial image1202(C5xDic6):11C2240,168

Non-split extensions G=N.Q with N=C5xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xDic6).1C2 = C5:Dic12φ: C2/C1C2 ⊆ Out C5xDic62404-(C5xDic6).1C2240,24
(C5xDic6).2C2 = C15:Q16φ: C2/C1C2 ⊆ Out C5xDic62404(C5xDic6).2C2240,22
(C5xDic6).3C2 = C5xDic12φ: C2/C1C2 ⊆ Out C5xDic62402(C5xDic6).3C2240,53
(C5xDic6).4C2 = C5xC3:Q16φ: C2/C1C2 ⊆ Out C5xDic62404(C5xDic6).4C2240,63

׿
x
:
Z
F
o
wr
Q
<