metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D15⋊Q8, Dic6⋊4D5, C20.16D6, Dic10⋊4S3, C12.18D10, C30.7C23, Dic5.4D6, C60.28C22, Dic3.3D10, D30.10C22, Dic15.12C22, C5⋊1(S3×Q8), C3⋊1(Q8×D5), C15⋊Q8⋊3C2, C15⋊3(C2×Q8), C4.21(S3×D5), (C5×Dic6)⋊6C2, (C4×D15).3C2, C6.7(C22×D5), (C3×Dic10)⋊6C2, D30.C2.1C2, C10.7(C22×S3), (C5×Dic3).3C22, (C3×Dic5).4C22, C2.11(C2×S3×D5), SmallGroup(240,131)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D15⋊Q8
G = < a,b,c,d | a15=b2=c4=1, d2=c2, bab=a-1, ac=ca, dad-1=a11, bc=cb, dbd-1=a10b, dcd-1=c-1 >
Subgroups: 312 in 76 conjugacy classes, 34 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2×C4, Q8, D5, C10, Dic3, Dic3, C12, C12, D6, C15, C2×Q8, Dic5, Dic5, C20, C20, D10, Dic6, Dic6, C4×S3, C3×Q8, D15, C30, Dic10, Dic10, C4×D5, C5×Q8, S3×Q8, C5×Dic3, C3×Dic5, Dic15, C60, D30, Q8×D5, D30.C2, C15⋊Q8, C3×Dic10, C5×Dic6, C4×D15, D15⋊Q8
Quotients: C1, C2, C22, S3, Q8, C23, D5, D6, C2×Q8, D10, C22×S3, C22×D5, S3×Q8, S3×D5, Q8×D5, C2×S3×D5, D15⋊Q8
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 57)(32 56)(33 55)(34 54)(35 53)(36 52)(37 51)(38 50)(39 49)(40 48)(41 47)(42 46)(43 60)(44 59)(45 58)(61 90)(62 89)(63 88)(64 87)(65 86)(66 85)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 77)(75 76)(91 109)(92 108)(93 107)(94 106)(95 120)(96 119)(97 118)(98 117)(99 116)(100 115)(101 114)(102 113)(103 112)(104 111)(105 110)
(1 54 16 35)(2 55 17 36)(3 56 18 37)(4 57 19 38)(5 58 20 39)(6 59 21 40)(7 60 22 41)(8 46 23 42)(9 47 24 43)(10 48 25 44)(11 49 26 45)(12 50 27 31)(13 51 28 32)(14 52 29 33)(15 53 30 34)(61 99 89 115)(62 100 90 116)(63 101 76 117)(64 102 77 118)(65 103 78 119)(66 104 79 120)(67 105 80 106)(68 91 81 107)(69 92 82 108)(70 93 83 109)(71 94 84 110)(72 95 85 111)(73 96 86 112)(74 97 87 113)(75 98 88 114)
(1 90 16 62)(2 86 17 73)(3 82 18 69)(4 78 19 65)(5 89 20 61)(6 85 21 72)(7 81 22 68)(8 77 23 64)(9 88 24 75)(10 84 25 71)(11 80 26 67)(12 76 27 63)(13 87 28 74)(14 83 29 70)(15 79 30 66)(31 117 50 101)(32 113 51 97)(33 109 52 93)(34 120 53 104)(35 116 54 100)(36 112 55 96)(37 108 56 92)(38 119 57 103)(39 115 58 99)(40 111 59 95)(41 107 60 91)(42 118 46 102)(43 114 47 98)(44 110 48 94)(45 106 49 105)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(41,47)(42,46)(43,60)(44,59)(45,58)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,109)(92,108)(93,107)(94,106)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110), (1,54,16,35)(2,55,17,36)(3,56,18,37)(4,57,19,38)(5,58,20,39)(6,59,21,40)(7,60,22,41)(8,46,23,42)(9,47,24,43)(10,48,25,44)(11,49,26,45)(12,50,27,31)(13,51,28,32)(14,52,29,33)(15,53,30,34)(61,99,89,115)(62,100,90,116)(63,101,76,117)(64,102,77,118)(65,103,78,119)(66,104,79,120)(67,105,80,106)(68,91,81,107)(69,92,82,108)(70,93,83,109)(71,94,84,110)(72,95,85,111)(73,96,86,112)(74,97,87,113)(75,98,88,114), (1,90,16,62)(2,86,17,73)(3,82,18,69)(4,78,19,65)(5,89,20,61)(6,85,21,72)(7,81,22,68)(8,77,23,64)(9,88,24,75)(10,84,25,71)(11,80,26,67)(12,76,27,63)(13,87,28,74)(14,83,29,70)(15,79,30,66)(31,117,50,101)(32,113,51,97)(33,109,52,93)(34,120,53,104)(35,116,54,100)(36,112,55,96)(37,108,56,92)(38,119,57,103)(39,115,58,99)(40,111,59,95)(41,107,60,91)(42,118,46,102)(43,114,47,98)(44,110,48,94)(45,106,49,105)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(41,47)(42,46)(43,60)(44,59)(45,58)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,109)(92,108)(93,107)(94,106)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110), (1,54,16,35)(2,55,17,36)(3,56,18,37)(4,57,19,38)(5,58,20,39)(6,59,21,40)(7,60,22,41)(8,46,23,42)(9,47,24,43)(10,48,25,44)(11,49,26,45)(12,50,27,31)(13,51,28,32)(14,52,29,33)(15,53,30,34)(61,99,89,115)(62,100,90,116)(63,101,76,117)(64,102,77,118)(65,103,78,119)(66,104,79,120)(67,105,80,106)(68,91,81,107)(69,92,82,108)(70,93,83,109)(71,94,84,110)(72,95,85,111)(73,96,86,112)(74,97,87,113)(75,98,88,114), (1,90,16,62)(2,86,17,73)(3,82,18,69)(4,78,19,65)(5,89,20,61)(6,85,21,72)(7,81,22,68)(8,77,23,64)(9,88,24,75)(10,84,25,71)(11,80,26,67)(12,76,27,63)(13,87,28,74)(14,83,29,70)(15,79,30,66)(31,117,50,101)(32,113,51,97)(33,109,52,93)(34,120,53,104)(35,116,54,100)(36,112,55,96)(37,108,56,92)(38,119,57,103)(39,115,58,99)(40,111,59,95)(41,107,60,91)(42,118,46,102)(43,114,47,98)(44,110,48,94)(45,106,49,105) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,57),(32,56),(33,55),(34,54),(35,53),(36,52),(37,51),(38,50),(39,49),(40,48),(41,47),(42,46),(43,60),(44,59),(45,58),(61,90),(62,89),(63,88),(64,87),(65,86),(66,85),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,77),(75,76),(91,109),(92,108),(93,107),(94,106),(95,120),(96,119),(97,118),(98,117),(99,116),(100,115),(101,114),(102,113),(103,112),(104,111),(105,110)], [(1,54,16,35),(2,55,17,36),(3,56,18,37),(4,57,19,38),(5,58,20,39),(6,59,21,40),(7,60,22,41),(8,46,23,42),(9,47,24,43),(10,48,25,44),(11,49,26,45),(12,50,27,31),(13,51,28,32),(14,52,29,33),(15,53,30,34),(61,99,89,115),(62,100,90,116),(63,101,76,117),(64,102,77,118),(65,103,78,119),(66,104,79,120),(67,105,80,106),(68,91,81,107),(69,92,82,108),(70,93,83,109),(71,94,84,110),(72,95,85,111),(73,96,86,112),(74,97,87,113),(75,98,88,114)], [(1,90,16,62),(2,86,17,73),(3,82,18,69),(4,78,19,65),(5,89,20,61),(6,85,21,72),(7,81,22,68),(8,77,23,64),(9,88,24,75),(10,84,25,71),(11,80,26,67),(12,76,27,63),(13,87,28,74),(14,83,29,70),(15,79,30,66),(31,117,50,101),(32,113,51,97),(33,109,52,93),(34,120,53,104),(35,116,54,100),(36,112,55,96),(37,108,56,92),(38,119,57,103),(39,115,58,99),(40,111,59,95),(41,107,60,91),(42,118,46,102),(43,114,47,98),(44,110,48,94),(45,106,49,105)]])
D15⋊Q8 is a maximal subgroup of
C40⋊14D6 Dic10.D6 D30.3D4 D30.4D4 Dic10⋊D6 D30.9D4 D15⋊Q16 C60.C23 D20.38D6 C30.C24 D20⋊24D6 C15⋊2- 1+4 D30.C23 C30.33C24 S3×Q8×D5
D15⋊Q8 is a maximal quotient of
Dic15⋊5Q8 Dic15⋊1Q8 Dic15⋊Q8 Dic15⋊6Q8 Dic15.Q8 Dic15.2Q8 Dic15⋊7Q8 D30⋊8Q8 Dic15.4Q8 D30⋊9Q8 Dic15⋊8Q8 D30⋊10Q8 D30.Q8 D30⋊Q8 D30⋊2Q8 D30⋊3Q8 D30⋊4Q8 D30.2Q8 C20⋊Dic6
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 6 | 10A | 10B | 12A | 12B | 12C | 15A | 15B | 20A | 20B | 20C | 20D | 20E | 20F | 30A | 30B | 60A | 60B | 60C | 60D |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 10 | 10 | 12 | 12 | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 30 | 30 | 60 | 60 | 60 | 60 |
size | 1 | 1 | 15 | 15 | 2 | 2 | 6 | 6 | 10 | 10 | 30 | 2 | 2 | 2 | 2 | 2 | 4 | 20 | 20 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | 4 | 4 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | + | + | - | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | Q8 | D5 | D6 | D6 | D10 | D10 | S3×Q8 | S3×D5 | Q8×D5 | C2×S3×D5 | D15⋊Q8 |
kernel | D15⋊Q8 | D30.C2 | C15⋊Q8 | C3×Dic10 | C5×Dic6 | C4×D15 | Dic10 | D15 | Dic6 | Dic5 | C20 | Dic3 | C12 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 4 | 2 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of D15⋊Q8 ►in GL6(𝔽61)
60 | 17 | 0 | 0 | 0 | 0 |
44 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 46 | 0 | 0 |
0 | 0 | 49 | 59 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
60 | 17 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 46 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 12 |
0 | 0 | 0 | 0 | 10 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 49 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 34 |
0 | 0 | 0 | 0 | 43 | 60 |
G:=sub<GL(6,GF(61))| [60,44,0,0,0,0,17,44,0,0,0,0,0,0,1,49,0,0,0,0,46,59,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,17,1,0,0,0,0,0,0,1,0,0,0,0,0,46,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,10,0,0,0,0,12,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,49,0,0,0,0,0,60,0,0,0,0,0,0,1,43,0,0,0,0,34,60] >;
D15⋊Q8 in GAP, Magma, Sage, TeX
D_{15}\rtimes Q_8
% in TeX
G:=Group("D15:Q8");
// GroupNames label
G:=SmallGroup(240,131);
// by ID
G=gap.SmallGroup(240,131);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,55,218,116,50,490,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^15=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^11,b*c=c*b,d*b*d^-1=a^10*b,d*c*d^-1=c^-1>;
// generators/relations