Extensions 1→N→G→Q→1 with N=C5×C3⋊D4 and Q=C2

Direct product G=N×Q with N=C5×C3⋊D4 and Q=C2
dρLabelID
C10×C3⋊D4120C10xC3:D4240,174

Semidirect products G=N:Q with N=C5×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C3⋊D4)⋊1C2 = C30.C23φ: C2/C1C2 ⊆ Out C5×C3⋊D41204-(C5xC3:D4):1C2240,141
(C5×C3⋊D4)⋊2C2 = Dic3.D10φ: C2/C1C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):2C2240,143
(C5×C3⋊D4)⋊3C2 = D5×C3⋊D4φ: C2/C1C2 ⊆ Out C5×C3⋊D4604(C5xC3:D4):3C2240,149
(C5×C3⋊D4)⋊4C2 = D10⋊D6φ: C2/C1C2 ⊆ Out C5×C3⋊D4604+(C5xC3:D4):4C2240,151
(C5×C3⋊D4)⋊5C2 = C5×S3×D4φ: C2/C1C2 ⊆ Out C5×C3⋊D4604(C5xC3:D4):5C2240,169
(C5×C3⋊D4)⋊6C2 = C5×D42S3φ: C2/C1C2 ⊆ Out C5×C3⋊D41204(C5xC3:D4):6C2240,170
(C5×C3⋊D4)⋊7C2 = C5×C4○D12φ: trivial image1202(C5xC3:D4):7C2240,168


׿
×
𝔽