Copied to
clipboard

G = D10⋊D6order 240 = 24·3·5

4th semidirect product of D10 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D104D6, D152D4, D64D10, Dic52D6, Dic32D10, D3010C22, C30.27C23, C53(S3×D4), C33(D4×D5), C159(C2×D4), (C2×C10)⋊5D6, (C2×C6)⋊2D10, C5⋊D42S3, C3⋊D42D5, C3⋊D206C2, C5⋊D126C2, C224(S3×D5), D30.C25C2, (C2×C30)⋊4C22, (C6×D5)⋊4C22, (S3×C10)⋊4C22, (C22×D15)⋊6C2, C6.27(C22×D5), C10.27(C22×S3), (C5×Dic3)⋊2C22, (C3×Dic5)⋊2C22, (C2×S3×D5)⋊6C2, C2.27(C2×S3×D5), (C3×C5⋊D4)⋊4C2, (C5×C3⋊D4)⋊4C2, SmallGroup(240,151)

Series: Derived Chief Lower central Upper central

C1C30 — D10⋊D6
C1C5C15C30C6×D5C2×S3×D5 — D10⋊D6
C15C30 — D10⋊D6
C1C2C22

Generators and relations for D10⋊D6
 G = < a,b,c,d | a10=b2=c6=d2=1, bab=dad=a-1, ac=ca, cbc-1=a5b, dbd=a3b, dcd=c-1 >

Subgroups: 600 in 108 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, D4, C23, D5, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C15, C2×D4, Dic5, C20, D10, D10, C2×C10, C2×C10, C4×S3, D12, C3⋊D4, C3⋊D4, C3×D4, C22×S3, C5×S3, C3×D5, D15, D15, C30, C30, C4×D5, D20, C5⋊D4, C5⋊D4, C5×D4, C22×D5, S3×D4, C5×Dic3, C3×Dic5, S3×D5, C6×D5, S3×C10, D30, D30, C2×C30, D4×D5, D30.C2, C3⋊D20, C5⋊D12, C3×C5⋊D4, C5×C3⋊D4, C2×S3×D5, C22×D15, D10⋊D6
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, C22×D5, S3×D4, S3×D5, D4×D5, C2×S3×D5, D10⋊D6

Smallest permutation representation of D10⋊D6
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 15)(12 14)(16 20)(17 19)(21 26)(22 25)(23 24)(27 30)(28 29)(31 38)(32 37)(33 36)(34 35)(39 40)(41 43)(44 50)(45 49)(46 48)(51 59)(52 58)(53 57)(54 56)
(1 50 35 53 29 11)(2 41 36 54 30 12)(3 42 37 55 21 13)(4 43 38 56 22 14)(5 44 39 57 23 15)(6 45 40 58 24 16)(7 46 31 59 25 17)(8 47 32 60 26 18)(9 48 33 51 27 19)(10 49 34 52 28 20)
(1 11)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 48)(22 47)(23 46)(24 45)(25 44)(26 43)(27 42)(28 41)(29 50)(30 49)(31 57)(32 56)(33 55)(34 54)(35 53)(36 52)(37 51)(38 60)(39 59)(40 58)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,10)(2,9)(3,8)(4,7)(5,6)(11,15)(12,14)(16,20)(17,19)(21,26)(22,25)(23,24)(27,30)(28,29)(31,38)(32,37)(33,36)(34,35)(39,40)(41,43)(44,50)(45,49)(46,48)(51,59)(52,58)(53,57)(54,56), (1,50,35,53,29,11)(2,41,36,54,30,12)(3,42,37,55,21,13)(4,43,38,56,22,14)(5,44,39,57,23,15)(6,45,40,58,24,16)(7,46,31,59,25,17)(8,47,32,60,26,18)(9,48,33,51,27,19)(10,49,34,52,28,20), (1,11)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,50)(30,49)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,60)(39,59)(40,58)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,10)(2,9)(3,8)(4,7)(5,6)(11,15)(12,14)(16,20)(17,19)(21,26)(22,25)(23,24)(27,30)(28,29)(31,38)(32,37)(33,36)(34,35)(39,40)(41,43)(44,50)(45,49)(46,48)(51,59)(52,58)(53,57)(54,56), (1,50,35,53,29,11)(2,41,36,54,30,12)(3,42,37,55,21,13)(4,43,38,56,22,14)(5,44,39,57,23,15)(6,45,40,58,24,16)(7,46,31,59,25,17)(8,47,32,60,26,18)(9,48,33,51,27,19)(10,49,34,52,28,20), (1,11)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,50)(30,49)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,60)(39,59)(40,58) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,15),(12,14),(16,20),(17,19),(21,26),(22,25),(23,24),(27,30),(28,29),(31,38),(32,37),(33,36),(34,35),(39,40),(41,43),(44,50),(45,49),(46,48),(51,59),(52,58),(53,57),(54,56)], [(1,50,35,53,29,11),(2,41,36,54,30,12),(3,42,37,55,21,13),(4,43,38,56,22,14),(5,44,39,57,23,15),(6,45,40,58,24,16),(7,46,31,59,25,17),(8,47,32,60,26,18),(9,48,33,51,27,19),(10,49,34,52,28,20)], [(1,11),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,48),(22,47),(23,46),(24,45),(25,44),(26,43),(27,42),(28,41),(29,50),(30,49),(31,57),(32,56),(33,55),(34,54),(35,53),(36,52),(37,51),(38,60),(39,59),(40,58)]])

D10⋊D6 is a maximal subgroup of
D2024D6  D2029D6  S3×D4×D5  D30.C23  D2014D6  D1214D10  C15⋊2+ 1+4
D10⋊D6 is a maximal quotient of
Dic3⋊Dic10  D30.34D4  D30.35D4  D308Q8  Dic1513D4  D30.Q8  Dic1514D4  D30⋊D4  D104Dic6  D63Dic10  D30.6D4  D302D4  D3012D4  Dic15.10D4  D30.27D4  D305D4  D15⋊D8  D30.8D4  Dic10⋊D6  D30.9D4  D20.10D6  Dic6⋊D10  D30.11D4  D125D10  D15⋊SD16  D60⋊C22  D15⋊Q16  C60.C23  D20.16D6  D20.17D6  D12.D10  D30.44D4  Dic15.19D4  D306D4  Dic153D4  D307D4  Dic154D4  Dic1516D4  Dic1517D4  D30.45D4  D30.16D4  Dic155D4  Dic1518D4  D3018D4  D3019D4  Dic15.48D4  D308D4

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A6B6C10A10B10C10D10E10F 12 15A15B20A20B30A···30F
order1222222234455666101010101010121515202030···30
size112610151530261022242022441212204412124···4

33 irreducible representations

dim1111111122222222244444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D5D6D6D6D10D10D10S3×D4S3×D5D4×D5C2×S3×D5D10⋊D6
kernelD10⋊D6D30.C2C3⋊D20C5⋊D12C3×C5⋊D4C5×C3⋊D4C2×S3×D5C22×D15C5⋊D4D15C3⋊D4Dic5D10C2×C10Dic3D6C2×C6C5C22C3C2C1
# reps1111111112211122212224

Matrix representation of D10⋊D6 in GL6(𝔽61)

17180000
4400000
0060000
0006000
000010
000001
,
4410000
17170000
0060000
006100
000010
000001
,
6000000
0600000
00602000
000100
00006020
000092
,
44430000
16170000
00602000
000100
00005920
000092

G:=sub<GL(6,GF(61))| [17,44,0,0,0,0,18,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[44,17,0,0,0,0,1,17,0,0,0,0,0,0,60,6,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,20,1,0,0,0,0,0,0,60,9,0,0,0,0,20,2],[44,16,0,0,0,0,43,17,0,0,0,0,0,0,60,0,0,0,0,0,20,1,0,0,0,0,0,0,59,9,0,0,0,0,20,2] >;

D10⋊D6 in GAP, Magma, Sage, TeX

D_{10}\rtimes D_6
% in TeX

G:=Group("D10:D6");
// GroupNames label

G:=SmallGroup(240,151);
// by ID

G=gap.SmallGroup(240,151);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,218,116,490,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^6=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^5*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽