Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C3xD5

Direct product G=NxQ with N=C2xC4 and Q=C3xD5
dρLabelID
D5xC2xC12120D5xC2xC12240,156

Semidirect products G=N:Q with N=C2xC4 and Q=C3xD5
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C3xD5) = C3xD10:C4φ: C3xD5/C15C2 ⊆ Aut C2xC4120(C2xC4):1(C3xD5)240,43
(C2xC4):2(C3xD5) = C6xD20φ: C3xD5/C15C2 ⊆ Aut C2xC4120(C2xC4):2(C3xD5)240,157
(C2xC4):3(C3xD5) = C3xC4oD20φ: C3xD5/C15C2 ⊆ Aut C2xC41202(C2xC4):3(C3xD5)240,158

Non-split extensions G=N.Q with N=C2xC4 and Q=C3xD5
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C3xD5) = C3xC10.D4φ: C3xD5/C15C2 ⊆ Aut C2xC4240(C2xC4).1(C3xD5)240,41
(C2xC4).2(C3xD5) = C3xC4.Dic5φ: C3xD5/C15C2 ⊆ Aut C2xC41202(C2xC4).2(C3xD5)240,39
(C2xC4).3(C3xD5) = C3xC4:Dic5φ: C3xD5/C15C2 ⊆ Aut C2xC4240(C2xC4).3(C3xD5)240,42
(C2xC4).4(C3xD5) = C6xDic10φ: C3xD5/C15C2 ⊆ Aut C2xC4240(C2xC4).4(C3xD5)240,155
(C2xC4).5(C3xD5) = C6xC5:2C8central extension (φ=1)240(C2xC4).5(C3xD5)240,38
(C2xC4).6(C3xD5) = C12xDic5central extension (φ=1)240(C2xC4).6(C3xD5)240,40

׿
x
:
Z
F
o
wr
Q
<