Copied to
clipboard

G = C3×C4.Dic5order 240 = 24·3·5

Direct product of C3 and C4.Dic5

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C4.Dic5, C20.4C12, C60.10C4, C12.59D10, C1514M4(2), C12.4Dic5, C60.72C22, C52C85C6, C4.(C3×Dic5), (C2×C30).9C4, (C2×C20).5C6, (C2×C12).8D5, C4.15(C6×D5), C54(C3×M4(2)), (C2×C60).12C2, (C2×C10).5C12, C20.16(C2×C6), C30.55(C2×C4), (C2×C6).1Dic5, C2.3(C6×Dic5), C10.13(C2×C12), C22.(C3×Dic5), C6.12(C2×Dic5), (C3×C52C8)⋊12C2, (C2×C4).2(C3×D5), SmallGroup(240,39)

Series: Derived Chief Lower central Upper central

C1C10 — C3×C4.Dic5
C1C5C10C20C60C3×C52C8 — C3×C4.Dic5
C5C10 — C3×C4.Dic5
C1C12C2×C12

Generators and relations for C3×C4.Dic5
 G = < a,b,c,d | a3=b4=1, c10=b2, d2=c5, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c9 >

2C2
2C6
2C10
5C8
5C8
2C30
5M4(2)
5C24
5C24
5C3×M4(2)

Smallest permutation representation of C3×C4.Dic5
On 120 points
Generators in S120
(1 51 26)(2 52 27)(3 53 28)(4 54 29)(5 55 30)(6 56 31)(7 57 32)(8 58 33)(9 59 34)(10 60 35)(11 41 36)(12 42 37)(13 43 38)(14 44 39)(15 45 40)(16 46 21)(17 47 22)(18 48 23)(19 49 24)(20 50 25)(61 117 96)(62 118 97)(63 119 98)(64 120 99)(65 101 100)(66 102 81)(67 103 82)(68 104 83)(69 105 84)(70 106 85)(71 107 86)(72 108 87)(73 109 88)(74 110 89)(75 111 90)(76 112 91)(77 113 92)(78 114 93)(79 115 94)(80 116 95)
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 26 31 36)(22 27 32 37)(23 28 33 38)(24 29 34 39)(25 30 35 40)(41 46 51 56)(42 47 52 57)(43 48 53 58)(44 49 54 59)(45 50 55 60)(61 76 71 66)(62 77 72 67)(63 78 73 68)(64 79 74 69)(65 80 75 70)(81 96 91 86)(82 97 92 87)(83 98 93 88)(84 99 94 89)(85 100 95 90)(101 116 111 106)(102 117 112 107)(103 118 113 108)(104 119 114 109)(105 120 115 110)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 78 6 63 11 68 16 73)(2 67 7 72 12 77 17 62)(3 76 8 61 13 66 18 71)(4 65 9 70 14 75 19 80)(5 74 10 79 15 64 20 69)(21 88 26 93 31 98 36 83)(22 97 27 82 32 87 37 92)(23 86 28 91 33 96 38 81)(24 95 29 100 34 85 39 90)(25 84 30 89 35 94 40 99)(41 104 46 109 51 114 56 119)(42 113 47 118 52 103 57 108)(43 102 48 107 53 112 58 117)(44 111 49 116 54 101 59 106)(45 120 50 105 55 110 60 115)

G:=sub<Sym(120)| (1,51,26)(2,52,27)(3,53,28)(4,54,29)(5,55,30)(6,56,31)(7,57,32)(8,58,33)(9,59,34)(10,60,35)(11,41,36)(12,42,37)(13,43,38)(14,44,39)(15,45,40)(16,46,21)(17,47,22)(18,48,23)(19,49,24)(20,50,25)(61,117,96)(62,118,97)(63,119,98)(64,120,99)(65,101,100)(66,102,81)(67,103,82)(68,104,83)(69,105,84)(70,106,85)(71,107,86)(72,108,87)(73,109,88)(74,110,89)(75,111,90)(76,112,91)(77,113,92)(78,114,93)(79,115,94)(80,116,95), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,26,31,36)(22,27,32,37)(23,28,33,38)(24,29,34,39)(25,30,35,40)(41,46,51,56)(42,47,52,57)(43,48,53,58)(44,49,54,59)(45,50,55,60)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70)(81,96,91,86)(82,97,92,87)(83,98,93,88)(84,99,94,89)(85,100,95,90)(101,116,111,106)(102,117,112,107)(103,118,113,108)(104,119,114,109)(105,120,115,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,78,6,63,11,68,16,73)(2,67,7,72,12,77,17,62)(3,76,8,61,13,66,18,71)(4,65,9,70,14,75,19,80)(5,74,10,79,15,64,20,69)(21,88,26,93,31,98,36,83)(22,97,27,82,32,87,37,92)(23,86,28,91,33,96,38,81)(24,95,29,100,34,85,39,90)(25,84,30,89,35,94,40,99)(41,104,46,109,51,114,56,119)(42,113,47,118,52,103,57,108)(43,102,48,107,53,112,58,117)(44,111,49,116,54,101,59,106)(45,120,50,105,55,110,60,115)>;

G:=Group( (1,51,26)(2,52,27)(3,53,28)(4,54,29)(5,55,30)(6,56,31)(7,57,32)(8,58,33)(9,59,34)(10,60,35)(11,41,36)(12,42,37)(13,43,38)(14,44,39)(15,45,40)(16,46,21)(17,47,22)(18,48,23)(19,49,24)(20,50,25)(61,117,96)(62,118,97)(63,119,98)(64,120,99)(65,101,100)(66,102,81)(67,103,82)(68,104,83)(69,105,84)(70,106,85)(71,107,86)(72,108,87)(73,109,88)(74,110,89)(75,111,90)(76,112,91)(77,113,92)(78,114,93)(79,115,94)(80,116,95), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,26,31,36)(22,27,32,37)(23,28,33,38)(24,29,34,39)(25,30,35,40)(41,46,51,56)(42,47,52,57)(43,48,53,58)(44,49,54,59)(45,50,55,60)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70)(81,96,91,86)(82,97,92,87)(83,98,93,88)(84,99,94,89)(85,100,95,90)(101,116,111,106)(102,117,112,107)(103,118,113,108)(104,119,114,109)(105,120,115,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,78,6,63,11,68,16,73)(2,67,7,72,12,77,17,62)(3,76,8,61,13,66,18,71)(4,65,9,70,14,75,19,80)(5,74,10,79,15,64,20,69)(21,88,26,93,31,98,36,83)(22,97,27,82,32,87,37,92)(23,86,28,91,33,96,38,81)(24,95,29,100,34,85,39,90)(25,84,30,89,35,94,40,99)(41,104,46,109,51,114,56,119)(42,113,47,118,52,103,57,108)(43,102,48,107,53,112,58,117)(44,111,49,116,54,101,59,106)(45,120,50,105,55,110,60,115) );

G=PermutationGroup([[(1,51,26),(2,52,27),(3,53,28),(4,54,29),(5,55,30),(6,56,31),(7,57,32),(8,58,33),(9,59,34),(10,60,35),(11,41,36),(12,42,37),(13,43,38),(14,44,39),(15,45,40),(16,46,21),(17,47,22),(18,48,23),(19,49,24),(20,50,25),(61,117,96),(62,118,97),(63,119,98),(64,120,99),(65,101,100),(66,102,81),(67,103,82),(68,104,83),(69,105,84),(70,106,85),(71,107,86),(72,108,87),(73,109,88),(74,110,89),(75,111,90),(76,112,91),(77,113,92),(78,114,93),(79,115,94),(80,116,95)], [(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,26,31,36),(22,27,32,37),(23,28,33,38),(24,29,34,39),(25,30,35,40),(41,46,51,56),(42,47,52,57),(43,48,53,58),(44,49,54,59),(45,50,55,60),(61,76,71,66),(62,77,72,67),(63,78,73,68),(64,79,74,69),(65,80,75,70),(81,96,91,86),(82,97,92,87),(83,98,93,88),(84,99,94,89),(85,100,95,90),(101,116,111,106),(102,117,112,107),(103,118,113,108),(104,119,114,109),(105,120,115,110)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,78,6,63,11,68,16,73),(2,67,7,72,12,77,17,62),(3,76,8,61,13,66,18,71),(4,65,9,70,14,75,19,80),(5,74,10,79,15,64,20,69),(21,88,26,93,31,98,36,83),(22,97,27,82,32,87,37,92),(23,86,28,91,33,96,38,81),(24,95,29,100,34,85,39,90),(25,84,30,89,35,94,40,99),(41,104,46,109,51,114,56,119),(42,113,47,118,52,103,57,108),(43,102,48,107,53,112,58,117),(44,111,49,116,54,101,59,106),(45,120,50,105,55,110,60,115)]])

C3×C4.Dic5 is a maximal subgroup of
C20.5D12  C60.29D4  C60.54D4  C60.31D4  C60.98D4  D6013C4  C60.D4  C12.59D20  D12.Dic5  D60.4C4  D154M4(2)  D6036C22  C60.38D4  C20.D12  D12.33D10  C3×D5×M4(2)

78 conjugacy classes

class 1 2A2B3A3B4A4B4C5A5B6A6B6C6D8A8B8C8D10A···10F12A12B12C12D12E12F15A15B15C15D20A···20H24A···24H30A···30L60A···60P
order12233444556666888810···101212121212121515151520···2024···2430···3060···60
size11211112221122101010102···211112222222···210···102···22···2

78 irreducible representations

dim1111111111222222222222
type++++-+-
imageC1C2C2C3C4C4C6C6C12C12D5M4(2)Dic5D10Dic5C3×D5C3×M4(2)C3×Dic5C6×D5C3×Dic5C4.Dic5C3×C4.Dic5
kernelC3×C4.Dic5C3×C52C8C2×C60C4.Dic5C60C2×C30C52C8C2×C20C20C2×C10C2×C12C15C12C12C2×C6C2×C4C5C4C4C22C3C1
# reps12122242442222244444816

Matrix representation of C3×C4.Dic5 in GL3(𝔽241) generated by

22500
010
001
,
24000
0640
00177
,
100
060
0040
,
100
001
0640
G:=sub<GL(3,GF(241))| [225,0,0,0,1,0,0,0,1],[240,0,0,0,64,0,0,0,177],[1,0,0,0,6,0,0,0,40],[1,0,0,0,0,64,0,1,0] >;

C3×C4.Dic5 in GAP, Magma, Sage, TeX

C_3\times C_4.{\rm Dic}_5
% in TeX

G:=Group("C3xC4.Dic5");
// GroupNames label

G:=SmallGroup(240,39);
// by ID

G=gap.SmallGroup(240,39);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-5,72,313,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=1,c^10=b^2,d^2=c^5,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^9>;
// generators/relations

Export

Subgroup lattice of C3×C4.Dic5 in TeX

׿
×
𝔽