Extensions 1→N→G→Q→1 with N=C4 and Q=Dic14

Direct product G=N×Q with N=C4 and Q=Dic14

Semidirect products G=N:Q with N=C4 and Q=Dic14
extensionφ:Q→Aut NdρLabelID
C41Dic14 = C28⋊Q8φ: Dic14/Dic7C2 ⊆ Aut C4224C4:1Dic14224,83
C42Dic14 = C282Q8φ: Dic14/C28C2 ⊆ Aut C4224C4:2Dic14224,64

Non-split extensions G=N.Q with N=C4 and Q=Dic14
extensionφ:Q→Aut NdρLabelID
C4.1Dic14 = C28.Q8φ: Dic14/Dic7C2 ⊆ Aut C4224C4.1Dic14224,13
C4.2Dic14 = C4.Dic14φ: Dic14/Dic7C2 ⊆ Aut C4224C4.2Dic14224,14
C4.3Dic14 = C28.3Q8φ: Dic14/Dic7C2 ⊆ Aut C4224C4.3Dic14224,85
C4.4Dic14 = C8⋊Dic7φ: Dic14/C28C2 ⊆ Aut C4224C4.4Dic14224,23
C4.5Dic14 = C561C4φ: Dic14/C28C2 ⊆ Aut C4224C4.5Dic14224,24
C4.6Dic14 = C28.6Q8φ: Dic14/C28C2 ⊆ Aut C4224C4.6Dic14224,65
C4.7Dic14 = C28⋊C8central extension (φ=1)224C4.7Dic14224,10
C4.8Dic14 = Dic7⋊C8central extension (φ=1)224C4.8Dic14224,20