Copied to
clipboard

G = C561C4order 224 = 25·7

1st semidirect product of C56 and C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C561C4, C81Dic7, C14.4D8, C2.1D56, C28.5Q8, C14.2Q16, C4.5Dic14, C2.2Dic28, C22.9D28, (C2×C8).3D7, C72(C2.D8), (C2×C56).5C2, C14.6(C4⋊C4), C28.34(C2×C4), (C2×C14).14D4, (C2×C4).69D14, C4⋊Dic7.3C2, C4.7(C2×Dic7), C2.4(C4⋊Dic7), (C2×C28).82C22, SmallGroup(224,24)

Series: Derived Chief Lower central Upper central

C1C28 — C561C4
C1C7C14C2×C14C2×C28C4⋊Dic7 — C561C4
C7C14C28 — C561C4
C1C22C2×C4C2×C8

Generators and relations for C561C4
 G = < a,b | a56=b4=1, bab-1=a-1 >

28C4
28C4
14C2×C4
14C2×C4
4Dic7
4Dic7
7C4⋊C4
7C4⋊C4
2C2×Dic7
2C2×Dic7
7C2.D8

Smallest permutation representation of C561C4
Regular action on 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 61 186 128)(2 60 187 127)(3 59 188 126)(4 58 189 125)(5 57 190 124)(6 112 191 123)(7 111 192 122)(8 110 193 121)(9 109 194 120)(10 108 195 119)(11 107 196 118)(12 106 197 117)(13 105 198 116)(14 104 199 115)(15 103 200 114)(16 102 201 113)(17 101 202 168)(18 100 203 167)(19 99 204 166)(20 98 205 165)(21 97 206 164)(22 96 207 163)(23 95 208 162)(24 94 209 161)(25 93 210 160)(26 92 211 159)(27 91 212 158)(28 90 213 157)(29 89 214 156)(30 88 215 155)(31 87 216 154)(32 86 217 153)(33 85 218 152)(34 84 219 151)(35 83 220 150)(36 82 221 149)(37 81 222 148)(38 80 223 147)(39 79 224 146)(40 78 169 145)(41 77 170 144)(42 76 171 143)(43 75 172 142)(44 74 173 141)(45 73 174 140)(46 72 175 139)(47 71 176 138)(48 70 177 137)(49 69 178 136)(50 68 179 135)(51 67 180 134)(52 66 181 133)(53 65 182 132)(54 64 183 131)(55 63 184 130)(56 62 185 129)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,61,186,128)(2,60,187,127)(3,59,188,126)(4,58,189,125)(5,57,190,124)(6,112,191,123)(7,111,192,122)(8,110,193,121)(9,109,194,120)(10,108,195,119)(11,107,196,118)(12,106,197,117)(13,105,198,116)(14,104,199,115)(15,103,200,114)(16,102,201,113)(17,101,202,168)(18,100,203,167)(19,99,204,166)(20,98,205,165)(21,97,206,164)(22,96,207,163)(23,95,208,162)(24,94,209,161)(25,93,210,160)(26,92,211,159)(27,91,212,158)(28,90,213,157)(29,89,214,156)(30,88,215,155)(31,87,216,154)(32,86,217,153)(33,85,218,152)(34,84,219,151)(35,83,220,150)(36,82,221,149)(37,81,222,148)(38,80,223,147)(39,79,224,146)(40,78,169,145)(41,77,170,144)(42,76,171,143)(43,75,172,142)(44,74,173,141)(45,73,174,140)(46,72,175,139)(47,71,176,138)(48,70,177,137)(49,69,178,136)(50,68,179,135)(51,67,180,134)(52,66,181,133)(53,65,182,132)(54,64,183,131)(55,63,184,130)(56,62,185,129)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,61,186,128)(2,60,187,127)(3,59,188,126)(4,58,189,125)(5,57,190,124)(6,112,191,123)(7,111,192,122)(8,110,193,121)(9,109,194,120)(10,108,195,119)(11,107,196,118)(12,106,197,117)(13,105,198,116)(14,104,199,115)(15,103,200,114)(16,102,201,113)(17,101,202,168)(18,100,203,167)(19,99,204,166)(20,98,205,165)(21,97,206,164)(22,96,207,163)(23,95,208,162)(24,94,209,161)(25,93,210,160)(26,92,211,159)(27,91,212,158)(28,90,213,157)(29,89,214,156)(30,88,215,155)(31,87,216,154)(32,86,217,153)(33,85,218,152)(34,84,219,151)(35,83,220,150)(36,82,221,149)(37,81,222,148)(38,80,223,147)(39,79,224,146)(40,78,169,145)(41,77,170,144)(42,76,171,143)(43,75,172,142)(44,74,173,141)(45,73,174,140)(46,72,175,139)(47,71,176,138)(48,70,177,137)(49,69,178,136)(50,68,179,135)(51,67,180,134)(52,66,181,133)(53,65,182,132)(54,64,183,131)(55,63,184,130)(56,62,185,129) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,61,186,128),(2,60,187,127),(3,59,188,126),(4,58,189,125),(5,57,190,124),(6,112,191,123),(7,111,192,122),(8,110,193,121),(9,109,194,120),(10,108,195,119),(11,107,196,118),(12,106,197,117),(13,105,198,116),(14,104,199,115),(15,103,200,114),(16,102,201,113),(17,101,202,168),(18,100,203,167),(19,99,204,166),(20,98,205,165),(21,97,206,164),(22,96,207,163),(23,95,208,162),(24,94,209,161),(25,93,210,160),(26,92,211,159),(27,91,212,158),(28,90,213,157),(29,89,214,156),(30,88,215,155),(31,87,216,154),(32,86,217,153),(33,85,218,152),(34,84,219,151),(35,83,220,150),(36,82,221,149),(37,81,222,148),(38,80,223,147),(39,79,224,146),(40,78,169,145),(41,77,170,144),(42,76,171,143),(43,75,172,142),(44,74,173,141),(45,73,174,140),(46,72,175,139),(47,71,176,138),(48,70,177,137),(49,69,178,136),(50,68,179,135),(51,67,180,134),(52,66,181,133),(53,65,182,132),(54,64,183,131),(55,63,184,130),(56,62,185,129)]])

C561C4 is a maximal subgroup of
C8.4Dic14  C8.5Dic14  C56.78D4  C1125C4  C1126C4  C2.D112  C14.SD32  C14.Q32  C568Q8  C56.13Q8  C4×D56  C4×Dic28  C8⋊Dic14  C42.16D14  C23.35D28  C23.10D28  C22.D56  C23.13D28  Dic7.D8  D4.2Dic14  D14.D8  C561C4⋊C2  Dic7.Q16  Q8.Dic14  D14.Q16  D14⋊C8.C2  Dic14.3Q8  D284Q8  D28.3Q8  C28.7Q16  C563Q8  C8⋊(C4×D7)  C562Q8  C56.4Q8  D7×C2.D8  C8.27(C4×D7)  C23.22D28  C5629D4  C56.82D4  C23.47D28  C562D4  D8×Dic7  C566D4  SD16⋊Dic7  C568D4  Q16×Dic7  D143Q16
C561C4 is a maximal quotient of
C561C8  C1125C4  C1126C4  C112.C4  C28.9C42

62 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F7A7B7C8A8B8C8D14A···14I28A···28L56A···56X
order1222444444777888814···1428···2856···56
size1111222828282822222222···22···22···2

62 irreducible representations

dim111122222222222
type+++-+++--+-++-
imageC1C2C2C4Q8D4D7D8Q16Dic7D14Dic14D28D56Dic28
kernelC561C4C4⋊Dic7C2×C56C56C28C2×C14C2×C8C14C14C8C2×C4C4C22C2C2
# reps12141132263661212

Matrix representation of C561C4 in GL4(𝔽113) generated by

385500
588100
004841
007278
,
315700
1108200
002165
002892
G:=sub<GL(4,GF(113))| [38,58,0,0,55,81,0,0,0,0,48,72,0,0,41,78],[31,110,0,0,57,82,0,0,0,0,21,28,0,0,65,92] >;

C561C4 in GAP, Magma, Sage, TeX

C_{56}\rtimes_1C_4
% in TeX

G:=Group("C56:1C4");
// GroupNames label

G:=SmallGroup(224,24);
// by ID

G=gap.SmallGroup(224,24);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,151,579,69,6917]);
// Polycyclic

G:=Group<a,b|a^56=b^4=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C561C4 in TeX

׿
×
𝔽