Copied to
clipboard

G = C28⋊C8order 224 = 25·7

1st semidirect product of C28 and C8 acting via C8/C4=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C281C8, C28.7Q8, C28.32D4, C4.16D28, C42.2D7, C4.7Dic14, C14.5M4(2), C4⋊(C7⋊C8), C71(C4⋊C8), C14.7(C2×C8), (C4×C28).4C2, (C2×C28).7C4, C14.1(C4⋊C4), (C2×C4).89D14, (C2×C4).3Dic7, C2.1(C4⋊Dic7), C2.2(C4.Dic7), C22.8(C2×Dic7), (C2×C28).103C22, C2.3(C2×C7⋊C8), (C2×C7⋊C8).8C2, (C2×C14).26(C2×C4), SmallGroup(224,10)

Series: Derived Chief Lower central Upper central

C1C14 — C28⋊C8
C1C7C14C28C2×C28C2×C7⋊C8 — C28⋊C8
C7C14 — C28⋊C8
C1C2×C4C42

Generators and relations for C28⋊C8
 G = < a,b | a28=b8=1, bab-1=a-1 >

2C4
14C8
14C8
2C28
7C2×C8
7C2×C8
2C7⋊C8
2C7⋊C8
7C4⋊C8

Smallest permutation representation of C28⋊C8
Regular action on 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 51 83 182 145 122 201 85)(2 50 84 181 146 121 202 112)(3 49 57 180 147 120 203 111)(4 48 58 179 148 119 204 110)(5 47 59 178 149 118 205 109)(6 46 60 177 150 117 206 108)(7 45 61 176 151 116 207 107)(8 44 62 175 152 115 208 106)(9 43 63 174 153 114 209 105)(10 42 64 173 154 113 210 104)(11 41 65 172 155 140 211 103)(12 40 66 171 156 139 212 102)(13 39 67 170 157 138 213 101)(14 38 68 169 158 137 214 100)(15 37 69 196 159 136 215 99)(16 36 70 195 160 135 216 98)(17 35 71 194 161 134 217 97)(18 34 72 193 162 133 218 96)(19 33 73 192 163 132 219 95)(20 32 74 191 164 131 220 94)(21 31 75 190 165 130 221 93)(22 30 76 189 166 129 222 92)(23 29 77 188 167 128 223 91)(24 56 78 187 168 127 224 90)(25 55 79 186 141 126 197 89)(26 54 80 185 142 125 198 88)(27 53 81 184 143 124 199 87)(28 52 82 183 144 123 200 86)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,51,83,182,145,122,201,85)(2,50,84,181,146,121,202,112)(3,49,57,180,147,120,203,111)(4,48,58,179,148,119,204,110)(5,47,59,178,149,118,205,109)(6,46,60,177,150,117,206,108)(7,45,61,176,151,116,207,107)(8,44,62,175,152,115,208,106)(9,43,63,174,153,114,209,105)(10,42,64,173,154,113,210,104)(11,41,65,172,155,140,211,103)(12,40,66,171,156,139,212,102)(13,39,67,170,157,138,213,101)(14,38,68,169,158,137,214,100)(15,37,69,196,159,136,215,99)(16,36,70,195,160,135,216,98)(17,35,71,194,161,134,217,97)(18,34,72,193,162,133,218,96)(19,33,73,192,163,132,219,95)(20,32,74,191,164,131,220,94)(21,31,75,190,165,130,221,93)(22,30,76,189,166,129,222,92)(23,29,77,188,167,128,223,91)(24,56,78,187,168,127,224,90)(25,55,79,186,141,126,197,89)(26,54,80,185,142,125,198,88)(27,53,81,184,143,124,199,87)(28,52,82,183,144,123,200,86)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,51,83,182,145,122,201,85)(2,50,84,181,146,121,202,112)(3,49,57,180,147,120,203,111)(4,48,58,179,148,119,204,110)(5,47,59,178,149,118,205,109)(6,46,60,177,150,117,206,108)(7,45,61,176,151,116,207,107)(8,44,62,175,152,115,208,106)(9,43,63,174,153,114,209,105)(10,42,64,173,154,113,210,104)(11,41,65,172,155,140,211,103)(12,40,66,171,156,139,212,102)(13,39,67,170,157,138,213,101)(14,38,68,169,158,137,214,100)(15,37,69,196,159,136,215,99)(16,36,70,195,160,135,216,98)(17,35,71,194,161,134,217,97)(18,34,72,193,162,133,218,96)(19,33,73,192,163,132,219,95)(20,32,74,191,164,131,220,94)(21,31,75,190,165,130,221,93)(22,30,76,189,166,129,222,92)(23,29,77,188,167,128,223,91)(24,56,78,187,168,127,224,90)(25,55,79,186,141,126,197,89)(26,54,80,185,142,125,198,88)(27,53,81,184,143,124,199,87)(28,52,82,183,144,123,200,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,51,83,182,145,122,201,85),(2,50,84,181,146,121,202,112),(3,49,57,180,147,120,203,111),(4,48,58,179,148,119,204,110),(5,47,59,178,149,118,205,109),(6,46,60,177,150,117,206,108),(7,45,61,176,151,116,207,107),(8,44,62,175,152,115,208,106),(9,43,63,174,153,114,209,105),(10,42,64,173,154,113,210,104),(11,41,65,172,155,140,211,103),(12,40,66,171,156,139,212,102),(13,39,67,170,157,138,213,101),(14,38,68,169,158,137,214,100),(15,37,69,196,159,136,215,99),(16,36,70,195,160,135,216,98),(17,35,71,194,161,134,217,97),(18,34,72,193,162,133,218,96),(19,33,73,192,163,132,219,95),(20,32,74,191,164,131,220,94),(21,31,75,190,165,130,221,93),(22,30,76,189,166,129,222,92),(23,29,77,188,167,128,223,91),(24,56,78,187,168,127,224,90),(25,55,79,186,141,126,197,89),(26,54,80,185,142,125,198,88),(27,53,81,184,143,124,199,87),(28,52,82,183,144,123,200,86)]])

C28⋊C8 is a maximal subgroup of
C4.8Dic28  C562C8  C561C8  C4.17D56  C28.53D8  C28.39SD16  C4.Dic28  C28.47D8  C4.D56  C28.2D8  C28.57D8  C28.26Q16  C28.9D8  C28.5Q16  C28.10D8  C8×Dic14  C5611Q8  C8×D28  C86D28  C56⋊Q8  C89D28  D7×C4⋊C8  C42.200D14  C42.202D14  C28⋊M4(2)  C42.30D14  C42.31D14  C287M4(2)  C42.6Dic7  C42.7Dic7  C42.43D14  C42.187D14  C28.50D8  C28.38SD16  D4.3Dic14  D4×C7⋊C8  C42.47D14  C283M4(2)  C287D8  D4.1D28  D4.2D28  C28.48SD16  C28.23Q16  Q8.3Dic14  Q8×C7⋊C8  C42.210D14  Q8⋊D28  Q8.1D28  C287Q16  C42.61D14  D28.23D4  Dic14.4Q8  D28.4Q8  C282D8  Dic149D4  C285SD16  D285Q8  D286Q8  C28⋊Q16  Dic145Q8  Dic146Q8
C28⋊C8 is a maximal quotient of
C562C8  C561C8  C28⋊C16  C56.16Q8  (C2×C28)⋊3C8

68 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H7A7B7C8A···8H14A···14I28A···28AJ
order1222444444447778···814···1428···28
size11111111222222214···142···22···2

68 irreducible representations

dim111112222222222
type++++-+-+-+
imageC1C2C2C4C8D4Q8D7M4(2)Dic7D14C7⋊C8Dic14D28C4.Dic7
kernelC28⋊C8C2×C7⋊C8C4×C28C2×C28C28C28C28C42C14C2×C4C2×C4C4C4C4C2
# reps12148113263126612

Matrix representation of C28⋊C8 in GL3(𝔽113) generated by

11200
08100
05777
,
6900
03071
01383
G:=sub<GL(3,GF(113))| [112,0,0,0,8,57,0,100,77],[69,0,0,0,30,13,0,71,83] >;

C28⋊C8 in GAP, Magma, Sage, TeX

C_{28}\rtimes C_8
% in TeX

G:=Group("C28:C8");
// GroupNames label

G:=SmallGroup(224,10);
// by ID

G=gap.SmallGroup(224,10);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,55,86,6917]);
// Polycyclic

G:=Group<a,b|a^28=b^8=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C28⋊C8 in TeX

׿
×
𝔽