Extensions 1→N→G→Q→1 with N=C7xC4oD4 and Q=C2

Direct product G=NxQ with N=C7xC4oD4 and Q=C2
dρLabelID
C14xC4oD4112C14xC4oD4224,192

Semidirect products G=N:Q with N=C7xC4oD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7xC4oD4):1C2 = D4:D14φ: C2/C1C2 ⊆ Out C7xC4oD4564+(C7xC4oD4):1C2224,144
(C7xC4oD4):2C2 = D4.8D14φ: C2/C1C2 ⊆ Out C7xC4oD41124(C7xC4oD4):2C2224,145
(C7xC4oD4):3C2 = D7xC4oD4φ: C2/C1C2 ⊆ Out C7xC4oD4564(C7xC4oD4):3C2224,184
(C7xC4oD4):4C2 = D4:8D14φ: C2/C1C2 ⊆ Out C7xC4oD4564+(C7xC4oD4):4C2224,185
(C7xC4oD4):5C2 = D4.10D14φ: C2/C1C2 ⊆ Out C7xC4oD41124-(C7xC4oD4):5C2224,186
(C7xC4oD4):6C2 = C7xC4oD8φ: C2/C1C2 ⊆ Out C7xC4oD41122(C7xC4oD4):6C2224,170
(C7xC4oD4):7C2 = C7xC8:C22φ: C2/C1C2 ⊆ Out C7xC4oD4564(C7xC4oD4):7C2224,171
(C7xC4oD4):8C2 = C7x2+ 1+4φ: C2/C1C2 ⊆ Out C7xC4oD4564(C7xC4oD4):8C2224,193
(C7xC4oD4):9C2 = C7x2- 1+4φ: C2/C1C2 ⊆ Out C7xC4oD41124(C7xC4oD4):9C2224,194

Non-split extensions G=N.Q with N=C7xC4oD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7xC4oD4).1C2 = D4:2Dic7φ: C2/C1C2 ⊆ Out C7xC4oD4564(C7xC4oD4).1C2224,43
(C7xC4oD4).2C2 = Q8.Dic7φ: C2/C1C2 ⊆ Out C7xC4oD41124(C7xC4oD4).2C2224,143
(C7xC4oD4).3C2 = D4.9D14φ: C2/C1C2 ⊆ Out C7xC4oD41124-(C7xC4oD4).3C2224,146
(C7xC4oD4).4C2 = C7xC4wrC2φ: C2/C1C2 ⊆ Out C7xC4oD4562(C7xC4oD4).4C2224,53
(C7xC4oD4).5C2 = C7xC8.C22φ: C2/C1C2 ⊆ Out C7xC4oD41124(C7xC4oD4).5C2224,172
(C7xC4oD4).6C2 = C7xC8oD4φ: trivial image1122(C7xC4oD4).6C2224,166

׿
x
:
Z
F
o
wr
Q
<