Copied to
clipboard

G = D48D14order 224 = 25·7

4th semidirect product of D4 and D14 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D48D14, Q87D14, C722+ 1+4, D2811C22, C28.26C23, C14.12C24, D14.7C23, Dic7.7C23, Dic1412C22, C4○D43D7, (D4×D7)⋊5C2, (C2×C4)⋊4D14, C4○D288C2, (C2×D28)⋊13C2, (C2×C28)⋊5C22, Q82D75C2, (C7×D4)⋊9C22, (C4×D7)⋊2C22, C7⋊D45C22, (C7×Q8)⋊8C22, (C2×C14).4C23, C2.13(C23×D7), C4.33(C22×D7), (C22×D7)⋊4C22, C22.3(C22×D7), (C7×C4○D4)⋊4C2, SmallGroup(224,185)

Series: Derived Chief Lower central Upper central

C1C14 — D48D14
C1C7C14D14C22×D7D4×D7 — D48D14
C7C14 — D48D14
C1C2C4○D4

Generators and relations for D48D14
 G = < a,b,c,d | a4=b2=c14=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, bd=db, dcd=c-1 >

Subgroups: 742 in 166 conjugacy classes, 85 normal (12 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×D4, C4○D4, C4○D4, Dic7, C28, C28, D14, D14, C2×C14, 2+ 1+4, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C7×D4, C7×Q8, C22×D7, C2×D28, C4○D28, D4×D7, Q82D7, C7×C4○D4, D48D14
Quotients: C1, C2, C22, C23, D7, C24, D14, 2+ 1+4, C22×D7, C23×D7, D48D14

Smallest permutation representation of D48D14
On 56 points
Generators in S56
(1 48 41 28)(2 49 42 15)(3 50 29 16)(4 51 30 17)(5 52 31 18)(6 53 32 19)(7 54 33 20)(8 55 34 21)(9 56 35 22)(10 43 36 23)(11 44 37 24)(12 45 38 25)(13 46 39 26)(14 47 40 27)
(1 28)(2 49)(3 16)(4 51)(5 18)(6 53)(7 20)(8 55)(9 22)(10 43)(11 24)(12 45)(13 26)(14 47)(15 42)(17 30)(19 32)(21 34)(23 36)(25 38)(27 40)(29 50)(31 52)(33 54)(35 56)(37 44)(39 46)(41 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 28)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 21)(29 52)(30 51)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 56)(40 55)(41 54)(42 53)

G:=sub<Sym(56)| (1,48,41,28)(2,49,42,15)(3,50,29,16)(4,51,30,17)(5,52,31,18)(6,53,32,19)(7,54,33,20)(8,55,34,21)(9,56,35,22)(10,43,36,23)(11,44,37,24)(12,45,38,25)(13,46,39,26)(14,47,40,27), (1,28)(2,49)(3,16)(4,51)(5,18)(6,53)(7,20)(8,55)(9,22)(10,43)(11,24)(12,45)(13,26)(14,47)(15,42)(17,30)(19,32)(21,34)(23,36)(25,38)(27,40)(29,50)(31,52)(33,54)(35,56)(37,44)(39,46)(41,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,56)(40,55)(41,54)(42,53)>;

G:=Group( (1,48,41,28)(2,49,42,15)(3,50,29,16)(4,51,30,17)(5,52,31,18)(6,53,32,19)(7,54,33,20)(8,55,34,21)(9,56,35,22)(10,43,36,23)(11,44,37,24)(12,45,38,25)(13,46,39,26)(14,47,40,27), (1,28)(2,49)(3,16)(4,51)(5,18)(6,53)(7,20)(8,55)(9,22)(10,43)(11,24)(12,45)(13,26)(14,47)(15,42)(17,30)(19,32)(21,34)(23,36)(25,38)(27,40)(29,50)(31,52)(33,54)(35,56)(37,44)(39,46)(41,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,56)(40,55)(41,54)(42,53) );

G=PermutationGroup([[(1,48,41,28),(2,49,42,15),(3,50,29,16),(4,51,30,17),(5,52,31,18),(6,53,32,19),(7,54,33,20),(8,55,34,21),(9,56,35,22),(10,43,36,23),(11,44,37,24),(12,45,38,25),(13,46,39,26),(14,47,40,27)], [(1,28),(2,49),(3,16),(4,51),(5,18),(6,53),(7,20),(8,55),(9,22),(10,43),(11,24),(12,45),(13,26),(14,47),(15,42),(17,30),(19,32),(21,34),(23,36),(25,38),(27,40),(29,50),(31,52),(33,54),(35,56),(37,44),(39,46),(41,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,28),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,21),(29,52),(30,51),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,56),(40,55),(41,54),(42,53)]])

D48D14 is a maximal subgroup of
D44D28  M4(2)⋊D14  D2818D4  D28.39D4  D4.11D28  D4.12D28  D815D14  D811D14  D85D14  C56.C23  D28.32C23  D28.34C23  C14.C25  D7×2+ 1+4  D28.39C23
D48D14 is a maximal quotient of
C42.90D14  C427D14  C42.91D14  C429D14  C4210D14  C42.95D14  C42.97D14  C42.99D14  C42.100D14  D46Dic14  C4211D14  D4×D28  D2823D4  Dic1424D4  C4217D14  C42.116D14  C42.117D14  C42.119D14  Q8×Dic14  C42.126D14  Q86D28  D2810Q8  C42.133D14  C42.136D14  C14.372+ 1+4  C14.382+ 1+4  D2819D4  C14.462+ 1+4  C14.1152+ 1+4  C14.472+ 1+4  C14.482+ 1+4  C14.172- 1+4  D2821D4  C14.512+ 1+4  C14.1182+ 1+4  C14.242- 1+4  C14.562+ 1+4  C14.262- 1+4  C14.1202+ 1+4  C14.1212+ 1+4  C14.612+ 1+4  C14.1222+ 1+4  C14.662+ 1+4  C14.852- 1+4  C14.682+ 1+4  C14.862- 1+4  C4218D14  D2810D4  C4220D14  C42.143D14  C42.144D14  C4222D14  C42.145D14  C42.148D14  D287Q8  C42.150D14  C42.153D14  C42.156D14  C42.157D14  C42.158D14  C4223D14  C4224D14  C42.161D14  C42.163D14  C42.164D14  C4225D14  C42.165D14  C14.1062- 1+4  C14.1452+ 1+4  C14.1462+ 1+4  C14.1082- 1+4  C14.1482+ 1+4

47 conjugacy classes

class 1 2A2B2C2D2E···2J4A4B4C4D4E4F7A7B7C14A14B14C14D···14L28A···28F28G···28O
order122222···244444477714141414···1428···2828···28
size1122214···14222214142222224···42···24···4

47 irreducible representations

dim111111222244
type++++++++++++
imageC1C2C2C2C2C2D7D14D14D142+ 1+4D48D14
kernelD48D14C2×D28C4○D28D4×D7Q82D7C7×C4○D4C4○D4C2×C4D4Q8C7C1
# reps133621399316

Matrix representation of D48D14 in GL4(𝔽29) generated by

276623
42025
00823
00621
,
276623
42025
1014823
014621
,
2619121
3077
002210
001910
,
223236
1527250
00238
00216
G:=sub<GL(4,GF(29))| [27,4,0,0,6,2,0,0,6,0,8,6,23,25,23,21],[27,4,10,0,6,2,14,14,6,0,8,6,23,25,23,21],[26,3,0,0,19,0,0,0,1,7,22,19,21,7,10,10],[2,15,0,0,23,27,0,0,23,25,23,21,6,0,8,6] >;

D48D14 in GAP, Magma, Sage, TeX

D_4\rtimes_8D_{14}
% in TeX

G:=Group("D4:8D14");
// GroupNames label

G:=SmallGroup(224,185);
// by ID

G=gap.SmallGroup(224,185);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,188,579,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^14=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽