metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊8D14, Q8⋊7D14, C7⋊22+ 1+4, D28⋊11C22, C28.26C23, C14.12C24, D14.7C23, Dic7.7C23, Dic14⋊12C22, C4○D4⋊3D7, (D4×D7)⋊5C2, (C2×C4)⋊4D14, C4○D28⋊8C2, (C2×D28)⋊13C2, (C2×C28)⋊5C22, Q8⋊2D7⋊5C2, (C7×D4)⋊9C22, (C4×D7)⋊2C22, C7⋊D4⋊5C22, (C7×Q8)⋊8C22, (C2×C14).4C23, C2.13(C23×D7), C4.33(C22×D7), (C22×D7)⋊4C22, C22.3(C22×D7), (C7×C4○D4)⋊4C2, SmallGroup(224,185)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊8D14
G = < a,b,c,d | a4=b2=c14=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, bd=db, dcd=c-1 >
Subgroups: 742 in 166 conjugacy classes, 85 normal (12 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×D4, C4○D4, C4○D4, Dic7, C28, C28, D14, D14, C2×C14, 2+ 1+4, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C7×D4, C7×Q8, C22×D7, C2×D28, C4○D28, D4×D7, Q8⋊2D7, C7×C4○D4, D4⋊8D14
Quotients: C1, C2, C22, C23, D7, C24, D14, 2+ 1+4, C22×D7, C23×D7, D4⋊8D14
(1 48 41 28)(2 49 42 15)(3 50 29 16)(4 51 30 17)(5 52 31 18)(6 53 32 19)(7 54 33 20)(8 55 34 21)(9 56 35 22)(10 43 36 23)(11 44 37 24)(12 45 38 25)(13 46 39 26)(14 47 40 27)
(1 28)(2 49)(3 16)(4 51)(5 18)(6 53)(7 20)(8 55)(9 22)(10 43)(11 24)(12 45)(13 26)(14 47)(15 42)(17 30)(19 32)(21 34)(23 36)(25 38)(27 40)(29 50)(31 52)(33 54)(35 56)(37 44)(39 46)(41 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 28)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 21)(29 52)(30 51)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 56)(40 55)(41 54)(42 53)
G:=sub<Sym(56)| (1,48,41,28)(2,49,42,15)(3,50,29,16)(4,51,30,17)(5,52,31,18)(6,53,32,19)(7,54,33,20)(8,55,34,21)(9,56,35,22)(10,43,36,23)(11,44,37,24)(12,45,38,25)(13,46,39,26)(14,47,40,27), (1,28)(2,49)(3,16)(4,51)(5,18)(6,53)(7,20)(8,55)(9,22)(10,43)(11,24)(12,45)(13,26)(14,47)(15,42)(17,30)(19,32)(21,34)(23,36)(25,38)(27,40)(29,50)(31,52)(33,54)(35,56)(37,44)(39,46)(41,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,56)(40,55)(41,54)(42,53)>;
G:=Group( (1,48,41,28)(2,49,42,15)(3,50,29,16)(4,51,30,17)(5,52,31,18)(6,53,32,19)(7,54,33,20)(8,55,34,21)(9,56,35,22)(10,43,36,23)(11,44,37,24)(12,45,38,25)(13,46,39,26)(14,47,40,27), (1,28)(2,49)(3,16)(4,51)(5,18)(6,53)(7,20)(8,55)(9,22)(10,43)(11,24)(12,45)(13,26)(14,47)(15,42)(17,30)(19,32)(21,34)(23,36)(25,38)(27,40)(29,50)(31,52)(33,54)(35,56)(37,44)(39,46)(41,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,56)(40,55)(41,54)(42,53) );
G=PermutationGroup([[(1,48,41,28),(2,49,42,15),(3,50,29,16),(4,51,30,17),(5,52,31,18),(6,53,32,19),(7,54,33,20),(8,55,34,21),(9,56,35,22),(10,43,36,23),(11,44,37,24),(12,45,38,25),(13,46,39,26),(14,47,40,27)], [(1,28),(2,49),(3,16),(4,51),(5,18),(6,53),(7,20),(8,55),(9,22),(10,43),(11,24),(12,45),(13,26),(14,47),(15,42),(17,30),(19,32),(21,34),(23,36),(25,38),(27,40),(29,50),(31,52),(33,54),(35,56),(37,44),(39,46),(41,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,28),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,21),(29,52),(30,51),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,56),(40,55),(41,54),(42,53)]])
D4⋊8D14 is a maximal subgroup of
D4⋊4D28 M4(2)⋊D14 D28⋊18D4 D28.39D4 D4.11D28 D4.12D28 D8⋊15D14 D8⋊11D14 D8⋊5D14 C56.C23 D28.32C23 D28.34C23 C14.C25 D7×2+ 1+4 D28.39C23
D4⋊8D14 is a maximal quotient of
C42.90D14 C42⋊7D14 C42.91D14 C42⋊9D14 C42⋊10D14 C42.95D14 C42.97D14 C42.99D14 C42.100D14 D4⋊6Dic14 C42⋊11D14 D4×D28 D28⋊23D4 Dic14⋊24D4 C42⋊17D14 C42.116D14 C42.117D14 C42.119D14 Q8×Dic14 C42.126D14 Q8⋊6D28 D28⋊10Q8 C42.133D14 C42.136D14 C14.372+ 1+4 C14.382+ 1+4 D28⋊19D4 C14.462+ 1+4 C14.1152+ 1+4 C14.472+ 1+4 C14.482+ 1+4 C14.172- 1+4 D28⋊21D4 C14.512+ 1+4 C14.1182+ 1+4 C14.242- 1+4 C14.562+ 1+4 C14.262- 1+4 C14.1202+ 1+4 C14.1212+ 1+4 C14.612+ 1+4 C14.1222+ 1+4 C14.662+ 1+4 C14.852- 1+4 C14.682+ 1+4 C14.862- 1+4 C42⋊18D14 D28⋊10D4 C42⋊20D14 C42.143D14 C42.144D14 C42⋊22D14 C42.145D14 C42.148D14 D28⋊7Q8 C42.150D14 C42.153D14 C42.156D14 C42.157D14 C42.158D14 C42⋊23D14 C42⋊24D14 C42.161D14 C42.163D14 C42.164D14 C42⋊25D14 C42.165D14 C14.1062- 1+4 C14.1452+ 1+4 C14.1462+ 1+4 C14.1082- 1+4 C14.1482+ 1+4
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | ··· | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 7A | 7B | 7C | 14A | 14B | 14C | 14D | ··· | 14L | 28A | ··· | 28F | 28G | ··· | 28O |
order | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 2 | 2 | 14 | ··· | 14 | 2 | 2 | 2 | 2 | 14 | 14 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D7 | D14 | D14 | D14 | 2+ 1+4 | D4⋊8D14 |
kernel | D4⋊8D14 | C2×D28 | C4○D28 | D4×D7 | Q8⋊2D7 | C7×C4○D4 | C4○D4 | C2×C4 | D4 | Q8 | C7 | C1 |
# reps | 1 | 3 | 3 | 6 | 2 | 1 | 3 | 9 | 9 | 3 | 1 | 6 |
Matrix representation of D4⋊8D14 ►in GL4(𝔽29) generated by
27 | 6 | 6 | 23 |
4 | 2 | 0 | 25 |
0 | 0 | 8 | 23 |
0 | 0 | 6 | 21 |
27 | 6 | 6 | 23 |
4 | 2 | 0 | 25 |
10 | 14 | 8 | 23 |
0 | 14 | 6 | 21 |
26 | 19 | 1 | 21 |
3 | 0 | 7 | 7 |
0 | 0 | 22 | 10 |
0 | 0 | 19 | 10 |
2 | 23 | 23 | 6 |
15 | 27 | 25 | 0 |
0 | 0 | 23 | 8 |
0 | 0 | 21 | 6 |
G:=sub<GL(4,GF(29))| [27,4,0,0,6,2,0,0,6,0,8,6,23,25,23,21],[27,4,10,0,6,2,14,14,6,0,8,6,23,25,23,21],[26,3,0,0,19,0,0,0,1,7,22,19,21,7,10,10],[2,15,0,0,23,27,0,0,23,25,23,21,6,0,8,6] >;
D4⋊8D14 in GAP, Magma, Sage, TeX
D_4\rtimes_8D_{14}
% in TeX
G:=Group("D4:8D14");
// GroupNames label
G:=SmallGroup(224,185);
// by ID
G=gap.SmallGroup(224,185);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,188,579,69,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^14=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations