Copied to
clipboard

G = D4.8D14order 224 = 25·7

3rd non-split extension by D4 of D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.8D14, C28.57D4, Q8.8D14, C28.18C23, D28.12C22, Dic14.11C22, D4⋊D77C2, C4○D42D7, C75(C4○D8), Q8⋊D77C2, C4○D284C2, D4.D77C2, C7⋊Q167C2, (C2×C14).9D4, (C2×C4).59D14, C14.60(C2×D4), C7⋊C8.10C22, C4.32(C7⋊D4), (C7×D4).8C22, C4.18(C22×D7), (C7×Q8).8C22, (C2×C28).43C22, C22.1(C7⋊D4), (C2×C7⋊C8)⋊8C2, (C7×C4○D4)⋊2C2, C2.24(C2×C7⋊D4), SmallGroup(224,145)

Series: Derived Chief Lower central Upper central

C1C28 — D4.8D14
C1C7C14C28D28C4○D28 — D4.8D14
C7C14C28 — D4.8D14
C1C4C2×C4C4○D4

Generators and relations for D4.8D14
 G = < a,b,c,d | a4=b2=1, c14=d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c13 >

Subgroups: 230 in 62 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C2×C8, D8, SD16, Q16, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4○D8, C7⋊C8, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C2×C7⋊C8, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C4○D28, C7×C4○D4, D4.8D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C4○D8, C7⋊D4, C22×D7, C2×C7⋊D4, D4.8D14

Smallest permutation representation of D4.8D14
On 112 points
Generators in S112
(1 71 15 57)(2 72 16 58)(3 73 17 59)(4 74 18 60)(5 75 19 61)(6 76 20 62)(7 77 21 63)(8 78 22 64)(9 79 23 65)(10 80 24 66)(11 81 25 67)(12 82 26 68)(13 83 27 69)(14 84 28 70)(29 98 43 112)(30 99 44 85)(31 100 45 86)(32 101 46 87)(33 102 47 88)(34 103 48 89)(35 104 49 90)(36 105 50 91)(37 106 51 92)(38 107 52 93)(39 108 53 94)(40 109 54 95)(41 110 55 96)(42 111 56 97)
(1 100)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 109)(11 110)(12 111)(13 112)(14 85)(15 86)(16 87)(17 88)(18 89)(19 90)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 57)(46 58)(47 59)(48 60)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14 15 28)(2 27 16 13)(3 12 17 26)(4 25 18 11)(5 10 19 24)(6 23 20 9)(7 8 21 22)(29 87 43 101)(30 100 44 86)(31 85 45 99)(32 98 46 112)(33 111 47 97)(34 96 48 110)(35 109 49 95)(36 94 50 108)(37 107 51 93)(38 92 52 106)(39 105 53 91)(40 90 54 104)(41 103 55 89)(42 88 56 102)(57 84 71 70)(58 69 72 83)(59 82 73 68)(60 67 74 81)(61 80 75 66)(62 65 76 79)(63 78 77 64)

G:=sub<Sym(112)| (1,71,15,57)(2,72,16,58)(3,73,17,59)(4,74,18,60)(5,75,19,61)(6,76,20,62)(7,77,21,63)(8,78,22,64)(9,79,23,65)(10,80,24,66)(11,81,25,67)(12,82,26,68)(13,83,27,69)(14,84,28,70)(29,98,43,112)(30,99,44,85)(31,100,45,86)(32,101,46,87)(33,102,47,88)(34,103,48,89)(35,104,49,90)(36,105,50,91)(37,106,51,92)(38,107,52,93)(39,108,53,94)(40,109,54,95)(41,110,55,96)(42,111,56,97), (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,57)(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14,15,28)(2,27,16,13)(3,12,17,26)(4,25,18,11)(5,10,19,24)(6,23,20,9)(7,8,21,22)(29,87,43,101)(30,100,44,86)(31,85,45,99)(32,98,46,112)(33,111,47,97)(34,96,48,110)(35,109,49,95)(36,94,50,108)(37,107,51,93)(38,92,52,106)(39,105,53,91)(40,90,54,104)(41,103,55,89)(42,88,56,102)(57,84,71,70)(58,69,72,83)(59,82,73,68)(60,67,74,81)(61,80,75,66)(62,65,76,79)(63,78,77,64)>;

G:=Group( (1,71,15,57)(2,72,16,58)(3,73,17,59)(4,74,18,60)(5,75,19,61)(6,76,20,62)(7,77,21,63)(8,78,22,64)(9,79,23,65)(10,80,24,66)(11,81,25,67)(12,82,26,68)(13,83,27,69)(14,84,28,70)(29,98,43,112)(30,99,44,85)(31,100,45,86)(32,101,46,87)(33,102,47,88)(34,103,48,89)(35,104,49,90)(36,105,50,91)(37,106,51,92)(38,107,52,93)(39,108,53,94)(40,109,54,95)(41,110,55,96)(42,111,56,97), (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,109)(11,110)(12,111)(13,112)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,57)(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14,15,28)(2,27,16,13)(3,12,17,26)(4,25,18,11)(5,10,19,24)(6,23,20,9)(7,8,21,22)(29,87,43,101)(30,100,44,86)(31,85,45,99)(32,98,46,112)(33,111,47,97)(34,96,48,110)(35,109,49,95)(36,94,50,108)(37,107,51,93)(38,92,52,106)(39,105,53,91)(40,90,54,104)(41,103,55,89)(42,88,56,102)(57,84,71,70)(58,69,72,83)(59,82,73,68)(60,67,74,81)(61,80,75,66)(62,65,76,79)(63,78,77,64) );

G=PermutationGroup([[(1,71,15,57),(2,72,16,58),(3,73,17,59),(4,74,18,60),(5,75,19,61),(6,76,20,62),(7,77,21,63),(8,78,22,64),(9,79,23,65),(10,80,24,66),(11,81,25,67),(12,82,26,68),(13,83,27,69),(14,84,28,70),(29,98,43,112),(30,99,44,85),(31,100,45,86),(32,101,46,87),(33,102,47,88),(34,103,48,89),(35,104,49,90),(36,105,50,91),(37,106,51,92),(38,107,52,93),(39,108,53,94),(40,109,54,95),(41,110,55,96),(42,111,56,97)], [(1,100),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,109),(11,110),(12,111),(13,112),(14,85),(15,86),(16,87),(17,88),(18,89),(19,90),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,57),(46,58),(47,59),(48,60),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14,15,28),(2,27,16,13),(3,12,17,26),(4,25,18,11),(5,10,19,24),(6,23,20,9),(7,8,21,22),(29,87,43,101),(30,100,44,86),(31,85,45,99),(32,98,46,112),(33,111,47,97),(34,96,48,110),(35,109,49,95),(36,94,50,108),(37,107,51,93),(38,92,52,106),(39,105,53,91),(40,90,54,104),(41,103,55,89),(42,88,56,102),(57,84,71,70),(58,69,72,83),(59,82,73,68),(60,67,74,81),(61,80,75,66),(62,65,76,79),(63,78,77,64)]])

D4.8D14 is a maximal subgroup of
M4(2).22D14  C42.196D14  C56.93D4  C56.50D4  D7×C4○D8  D810D14  D85D14  D86D14  C56.C23  D28.44D4  C28.C24  D28.32C23  D28.33C23  D28.34C23  D28.35C23
D4.8D14 is a maximal quotient of
C4⋊C4.233D14  C28.45(C4⋊C4)  C4.(C2×D28)  C4⋊C4.236D14  D4.3Dic14  C4×D4⋊D7  D4.1D28  C4×D4.D7  Q8.3Dic14  C4×Q8⋊D7  Q8.1D28  C4×C7⋊Q16  (C2×D4).D14  D2817D4  C7⋊C822D4  C7⋊C823D4  C14.(C4○D8)  D28.37D4  C7⋊C824D4  C7⋊C8.29D4  C42.61D14  C42.213D14  D28.23D4  C42.214D14  Dic14.4Q8  C42.215D14  D28.4Q8  C42.216D14  C28.(C2×D4)  (C7×D4)⋊14D4  (C7×D4).32D4

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E7A7B7C8A8B8C8D14A14B14C14D···14L28A···28F28G···28O
order1222244444777888814141414···1428···2828···28
size112428112428222141414142224···42···24···4

44 irreducible representations

dim111111112222222224
type++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D7D14D14D14C4○D8C7⋊D4C7⋊D4D4.8D14
kernelD4.8D14C2×C7⋊C8D4⋊D7D4.D7Q8⋊D7C7⋊Q16C4○D28C7×C4○D4C28C2×C14C4○D4C2×C4D4Q8C7C4C22C1
# reps111111111133334666

Matrix representation of D4.8D14 in GL4(𝔽113) generated by

112000
011200
001106
0081112
,
917400
1082200
0009
00880
,
885400
33100
00980
00098
,
885400
12500
00980
002815
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,1,81,0,0,106,112],[91,108,0,0,74,22,0,0,0,0,0,88,0,0,9,0],[88,33,0,0,54,1,0,0,0,0,98,0,0,0,0,98],[88,1,0,0,54,25,0,0,0,0,98,28,0,0,0,15] >;

D4.8D14 in GAP, Magma, Sage, TeX

D_4._8D_{14}
% in TeX

G:=Group("D4.8D14");
// GroupNames label

G:=SmallGroup(224,145);
// by ID

G=gap.SmallGroup(224,145);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,218,579,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^14=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽