Extensions 1→N→G→Q→1 with N=C2×Dic7 and Q=C4

Direct product G=N×Q with N=C2×Dic7 and Q=C4
dρLabelID
C2×C4×Dic7224C2xC4xDic7224,117

Semidirect products G=N:Q with N=C2×Dic7 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic7)⋊C4 = C23.1D14φ: C4/C1C4 ⊆ Out C2×Dic7564(C2xDic7):C4224,12
(C2×Dic7)⋊2C4 = C14.C42φ: C4/C2C2 ⊆ Out C2×Dic7224(C2xDic7):2C4224,37
(C2×Dic7)⋊3C4 = C23.11D14φ: C4/C2C2 ⊆ Out C2×Dic7112(C2xDic7):3C4224,72
(C2×Dic7)⋊4C4 = C2×Dic7⋊C4φ: C4/C2C2 ⊆ Out C2×Dic7224(C2xDic7):4C4224,118

Non-split extensions G=N.Q with N=C2×Dic7 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic7).C4 = C4.12D28φ: C4/C1C4 ⊆ Out C2×Dic71124-(C2xDic7).C4224,30
(C2×Dic7).2C4 = Dic7⋊C8φ: C4/C2C2 ⊆ Out C2×Dic7224(C2xDic7).2C4224,20
(C2×Dic7).3C4 = C56⋊C4φ: C4/C2C2 ⊆ Out C2×Dic7224(C2xDic7).3C4224,21
(C2×Dic7).4C4 = D14⋊C8φ: C4/C2C2 ⊆ Out C2×Dic7112(C2xDic7).4C4224,26
(C2×Dic7).5C4 = C2×C8⋊D7φ: C4/C2C2 ⊆ Out C2×Dic7112(C2xDic7).5C4224,95
(C2×Dic7).6C4 = D7×M4(2)φ: C4/C2C2 ⊆ Out C2×Dic7564(C2xDic7).6C4224,101
(C2×Dic7).7C4 = C8×Dic7φ: trivial image224(C2xDic7).7C4224,19
(C2×Dic7).8C4 = D7×C2×C8φ: trivial image112(C2xDic7).8C4224,94

׿
×
𝔽