Copied to
clipboard

G = C2×C8⋊D7order 224 = 25·7

Direct product of C2 and C8⋊D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C8⋊D7, C89D14, C5611C22, C141M4(2), C28.36C23, (C2×C8)⋊6D7, (C2×C56)⋊9C2, C7⋊C810C22, (C4×D7).3C4, C4.24(C4×D7), C71(C2×M4(2)), C28.27(C2×C4), D14.5(C2×C4), (C2×C4).98D14, Dic7.6(C2×C4), (C2×Dic7).5C4, (C22×D7).3C4, C22.14(C4×D7), C4.36(C22×D7), C14.13(C22×C4), (C4×D7).14C22, (C2×C28).111C22, (C2×C7⋊C8)⋊11C2, C2.14(C2×C4×D7), (C2×C4×D7).10C2, (C2×C14).15(C2×C4), SmallGroup(224,95)

Series: Derived Chief Lower central Upper central

C1C14 — C2×C8⋊D7
C1C7C14C28C4×D7C2×C4×D7 — C2×C8⋊D7
C7C14 — C2×C8⋊D7
C1C2×C4C2×C8

Generators and relations for C2×C8⋊D7
 G = < a,b,c,d | a2=b8=c7=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b5, dcd=c-1 >

Subgroups: 238 in 68 conjugacy classes, 41 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), C22×C4, Dic7, C28, D14, D14, C2×C14, C2×M4(2), C7⋊C8, C56, C4×D7, C2×Dic7, C2×C28, C22×D7, C8⋊D7, C2×C7⋊C8, C2×C56, C2×C4×D7, C2×C8⋊D7
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, M4(2), C22×C4, D14, C2×M4(2), C4×D7, C22×D7, C8⋊D7, C2×C4×D7, C2×C8⋊D7

Smallest permutation representation of C2×C8⋊D7
On 112 points
Generators in S112
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 40)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 62)(18 63)(19 64)(20 57)(21 58)(22 59)(23 60)(24 61)(41 103)(42 104)(43 97)(44 98)(45 99)(46 100)(47 101)(48 102)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(56 96)(65 84)(66 85)(67 86)(68 87)(69 88)(70 81)(71 82)(72 83)(73 107)(74 108)(75 109)(76 110)(77 111)(78 112)(79 105)(80 106)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 47 50 86 19 10 105)(2 48 51 87 20 11 106)(3 41 52 88 21 12 107)(4 42 53 81 22 13 108)(5 43 54 82 23 14 109)(6 44 55 83 24 15 110)(7 45 56 84 17 16 111)(8 46 49 85 18 9 112)(25 102 91 68 57 34 80)(26 103 92 69 58 35 73)(27 104 93 70 59 36 74)(28 97 94 71 60 37 75)(29 98 95 72 61 38 76)(30 99 96 65 62 39 77)(31 100 89 66 63 40 78)(32 101 90 67 64 33 79)
(1 105)(2 110)(3 107)(4 112)(5 109)(6 106)(7 111)(8 108)(9 42)(10 47)(11 44)(12 41)(13 46)(14 43)(15 48)(16 45)(17 56)(18 53)(19 50)(20 55)(21 52)(22 49)(23 54)(24 51)(25 76)(26 73)(27 78)(28 75)(29 80)(30 77)(31 74)(32 79)(33 101)(34 98)(35 103)(36 100)(37 97)(38 102)(39 99)(40 104)(57 95)(58 92)(59 89)(60 94)(61 91)(62 96)(63 93)(64 90)(66 70)(68 72)(81 85)(83 87)

G:=sub<Sym(112)| (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(41,103)(42,104)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(65,84)(66,85)(67,86)(68,87)(69,88)(70,81)(71,82)(72,83)(73,107)(74,108)(75,109)(76,110)(77,111)(78,112)(79,105)(80,106), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,47,50,86,19,10,105)(2,48,51,87,20,11,106)(3,41,52,88,21,12,107)(4,42,53,81,22,13,108)(5,43,54,82,23,14,109)(6,44,55,83,24,15,110)(7,45,56,84,17,16,111)(8,46,49,85,18,9,112)(25,102,91,68,57,34,80)(26,103,92,69,58,35,73)(27,104,93,70,59,36,74)(28,97,94,71,60,37,75)(29,98,95,72,61,38,76)(30,99,96,65,62,39,77)(31,100,89,66,63,40,78)(32,101,90,67,64,33,79), (1,105)(2,110)(3,107)(4,112)(5,109)(6,106)(7,111)(8,108)(9,42)(10,47)(11,44)(12,41)(13,46)(14,43)(15,48)(16,45)(17,56)(18,53)(19,50)(20,55)(21,52)(22,49)(23,54)(24,51)(25,76)(26,73)(27,78)(28,75)(29,80)(30,77)(31,74)(32,79)(33,101)(34,98)(35,103)(36,100)(37,97)(38,102)(39,99)(40,104)(57,95)(58,92)(59,89)(60,94)(61,91)(62,96)(63,93)(64,90)(66,70)(68,72)(81,85)(83,87)>;

G:=Group( (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(41,103)(42,104)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(65,84)(66,85)(67,86)(68,87)(69,88)(70,81)(71,82)(72,83)(73,107)(74,108)(75,109)(76,110)(77,111)(78,112)(79,105)(80,106), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,47,50,86,19,10,105)(2,48,51,87,20,11,106)(3,41,52,88,21,12,107)(4,42,53,81,22,13,108)(5,43,54,82,23,14,109)(6,44,55,83,24,15,110)(7,45,56,84,17,16,111)(8,46,49,85,18,9,112)(25,102,91,68,57,34,80)(26,103,92,69,58,35,73)(27,104,93,70,59,36,74)(28,97,94,71,60,37,75)(29,98,95,72,61,38,76)(30,99,96,65,62,39,77)(31,100,89,66,63,40,78)(32,101,90,67,64,33,79), (1,105)(2,110)(3,107)(4,112)(5,109)(6,106)(7,111)(8,108)(9,42)(10,47)(11,44)(12,41)(13,46)(14,43)(15,48)(16,45)(17,56)(18,53)(19,50)(20,55)(21,52)(22,49)(23,54)(24,51)(25,76)(26,73)(27,78)(28,75)(29,80)(30,77)(31,74)(32,79)(33,101)(34,98)(35,103)(36,100)(37,97)(38,102)(39,99)(40,104)(57,95)(58,92)(59,89)(60,94)(61,91)(62,96)(63,93)(64,90)(66,70)(68,72)(81,85)(83,87) );

G=PermutationGroup([[(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,40),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,62),(18,63),(19,64),(20,57),(21,58),(22,59),(23,60),(24,61),(41,103),(42,104),(43,97),(44,98),(45,99),(46,100),(47,101),(48,102),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(56,96),(65,84),(66,85),(67,86),(68,87),(69,88),(70,81),(71,82),(72,83),(73,107),(74,108),(75,109),(76,110),(77,111),(78,112),(79,105),(80,106)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,47,50,86,19,10,105),(2,48,51,87,20,11,106),(3,41,52,88,21,12,107),(4,42,53,81,22,13,108),(5,43,54,82,23,14,109),(6,44,55,83,24,15,110),(7,45,56,84,17,16,111),(8,46,49,85,18,9,112),(25,102,91,68,57,34,80),(26,103,92,69,58,35,73),(27,104,93,70,59,36,74),(28,97,94,71,60,37,75),(29,98,95,72,61,38,76),(30,99,96,65,62,39,77),(31,100,89,66,63,40,78),(32,101,90,67,64,33,79)], [(1,105),(2,110),(3,107),(4,112),(5,109),(6,106),(7,111),(8,108),(9,42),(10,47),(11,44),(12,41),(13,46),(14,43),(15,48),(16,45),(17,56),(18,53),(19,50),(20,55),(21,52),(22,49),(23,54),(24,51),(25,76),(26,73),(27,78),(28,75),(29,80),(30,77),(31,74),(32,79),(33,101),(34,98),(35,103),(36,100),(37,97),(38,102),(39,99),(40,104),(57,95),(58,92),(59,89),(60,94),(61,91),(62,96),(63,93),(64,90),(66,70),(68,72),(81,85),(83,87)]])

C2×C8⋊D7 is a maximal subgroup of
M5(2)⋊D7  C86D28  D14.C42  C89D28  Dic7.C42  D14.4C42  D14⋊M4(2)  D14⋊C8⋊C2  Dic7⋊M4(2)  C7⋊C826D4  (D4×D7)⋊C4  D4⋊(C4×D7)  C7⋊C81D4  C7⋊C8⋊D4  (Q8×D7)⋊C4  Q8⋊(C4×D7)  C7⋊(C8⋊D4)  C7⋊C8.D4  D143M4(2)  C28⋊M4(2)  C282M4(2)  C42.30D14  C8⋊(C4×D7)  C567D4  C8.2D28  C56⋊(C2×C4)  C83D28  M4(2).25D14  C5632D4  C5618D4  C5612D4  C568D4  C56.36D4  C2×D7×M4(2)  C56.49C23  D810D14
C2×C8⋊D7 is a maximal quotient of
C5611Q8  C42.282D14  C86D28  Dic7.M4(2)  D14⋊M4(2)  C7⋊C826D4  C28.M4(2)  C42.202D14  C28⋊M4(2)  C282M4(2)  C5632D4

68 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F7A7B7C8A8B8C8D8E8F8G8H14A···14I28A···28L56A···56X
order1222224444447778888888814···1428···2856···56
size11111414111114142222222141414142···22···22···2

68 irreducible representations

dim111111112222222
type++++++++
imageC1C2C2C2C2C4C4C4D7M4(2)D14D14C4×D7C4×D7C8⋊D7
kernelC2×C8⋊D7C8⋊D7C2×C7⋊C8C2×C56C2×C4×D7C4×D7C2×Dic7C22×D7C2×C8C14C8C2×C4C4C22C2
# reps1411142234636624

Matrix representation of C2×C8⋊D7 in GL4(𝔽113) generated by

112000
011200
0010
0001
,
98000
09800
004976
003764
,
911200
1000
0079112
0010
,
911200
8010400
00341
008879
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,1,0,0,0,0,1],[98,0,0,0,0,98,0,0,0,0,49,37,0,0,76,64],[9,1,0,0,112,0,0,0,0,0,79,1,0,0,112,0],[9,80,0,0,112,104,0,0,0,0,34,88,0,0,1,79] >;

C2×C8⋊D7 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes D_7
% in TeX

G:=Group("C2xC8:D7");
// GroupNames label

G:=SmallGroup(224,95);
// by ID

G=gap.SmallGroup(224,95);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,362,50,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^7=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^5,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽