Copied to
clipboard

G = C4.12D28order 224 = 25·7

4th non-split extension by C4 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4.12D28, C28.47D4, M4(2).2D7, (C2×C4).2D14, (C2×Dic7).C4, C22.5(C4×D7), C4.22(C7⋊D4), C71(C4.10D4), C4.Dic7.3C2, C2.10(D14⋊C4), C14.9(C22⋊C4), (C2×C28).14C22, (C2×Dic14).6C2, (C7×M4(2)).2C2, (C2×C14).3(C2×C4), SmallGroup(224,30)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4.12D28
C1C7C14C28C2×C28C2×Dic14 — C4.12D28
C7C14C2×C14 — C4.12D28
C1C2C2×C4M4(2)

Generators and relations for C4.12D28
 G = < a,b,c | a28=1, b4=c2=a14, bab-1=cac-1=a-1, cbc-1=a21b3 >

2C2
14C4
14C4
2C14
2C8
7C2×C4
7C2×C4
14C8
14Q8
14Q8
2Dic7
2Dic7
7M4(2)
7C2×Q8
2Dic14
2Dic14
2C7⋊C8
2C56
7C4.10D4

Smallest permutation representation of C4.12D28
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 92 22 99 15 106 8 85)(2 91 23 98 16 105 9 112)(3 90 24 97 17 104 10 111)(4 89 25 96 18 103 11 110)(5 88 26 95 19 102 12 109)(6 87 27 94 20 101 13 108)(7 86 28 93 21 100 14 107)(29 66 36 59 43 80 50 73)(30 65 37 58 44 79 51 72)(31 64 38 57 45 78 52 71)(32 63 39 84 46 77 53 70)(33 62 40 83 47 76 54 69)(34 61 41 82 48 75 55 68)(35 60 42 81 49 74 56 67)
(1 61 15 75)(2 60 16 74)(3 59 17 73)(4 58 18 72)(5 57 19 71)(6 84 20 70)(7 83 21 69)(8 82 22 68)(9 81 23 67)(10 80 24 66)(11 79 25 65)(12 78 26 64)(13 77 27 63)(14 76 28 62)(29 104 43 90)(30 103 44 89)(31 102 45 88)(32 101 46 87)(33 100 47 86)(34 99 48 85)(35 98 49 112)(36 97 50 111)(37 96 51 110)(38 95 52 109)(39 94 53 108)(40 93 54 107)(41 92 55 106)(42 91 56 105)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,92,22,99,15,106,8,85)(2,91,23,98,16,105,9,112)(3,90,24,97,17,104,10,111)(4,89,25,96,18,103,11,110)(5,88,26,95,19,102,12,109)(6,87,27,94,20,101,13,108)(7,86,28,93,21,100,14,107)(29,66,36,59,43,80,50,73)(30,65,37,58,44,79,51,72)(31,64,38,57,45,78,52,71)(32,63,39,84,46,77,53,70)(33,62,40,83,47,76,54,69)(34,61,41,82,48,75,55,68)(35,60,42,81,49,74,56,67), (1,61,15,75)(2,60,16,74)(3,59,17,73)(4,58,18,72)(5,57,19,71)(6,84,20,70)(7,83,21,69)(8,82,22,68)(9,81,23,67)(10,80,24,66)(11,79,25,65)(12,78,26,64)(13,77,27,63)(14,76,28,62)(29,104,43,90)(30,103,44,89)(31,102,45,88)(32,101,46,87)(33,100,47,86)(34,99,48,85)(35,98,49,112)(36,97,50,111)(37,96,51,110)(38,95,52,109)(39,94,53,108)(40,93,54,107)(41,92,55,106)(42,91,56,105)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,92,22,99,15,106,8,85)(2,91,23,98,16,105,9,112)(3,90,24,97,17,104,10,111)(4,89,25,96,18,103,11,110)(5,88,26,95,19,102,12,109)(6,87,27,94,20,101,13,108)(7,86,28,93,21,100,14,107)(29,66,36,59,43,80,50,73)(30,65,37,58,44,79,51,72)(31,64,38,57,45,78,52,71)(32,63,39,84,46,77,53,70)(33,62,40,83,47,76,54,69)(34,61,41,82,48,75,55,68)(35,60,42,81,49,74,56,67), (1,61,15,75)(2,60,16,74)(3,59,17,73)(4,58,18,72)(5,57,19,71)(6,84,20,70)(7,83,21,69)(8,82,22,68)(9,81,23,67)(10,80,24,66)(11,79,25,65)(12,78,26,64)(13,77,27,63)(14,76,28,62)(29,104,43,90)(30,103,44,89)(31,102,45,88)(32,101,46,87)(33,100,47,86)(34,99,48,85)(35,98,49,112)(36,97,50,111)(37,96,51,110)(38,95,52,109)(39,94,53,108)(40,93,54,107)(41,92,55,106)(42,91,56,105) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,92,22,99,15,106,8,85),(2,91,23,98,16,105,9,112),(3,90,24,97,17,104,10,111),(4,89,25,96,18,103,11,110),(5,88,26,95,19,102,12,109),(6,87,27,94,20,101,13,108),(7,86,28,93,21,100,14,107),(29,66,36,59,43,80,50,73),(30,65,37,58,44,79,51,72),(31,64,38,57,45,78,52,71),(32,63,39,84,46,77,53,70),(33,62,40,83,47,76,54,69),(34,61,41,82,48,75,55,68),(35,60,42,81,49,74,56,67)], [(1,61,15,75),(2,60,16,74),(3,59,17,73),(4,58,18,72),(5,57,19,71),(6,84,20,70),(7,83,21,69),(8,82,22,68),(9,81,23,67),(10,80,24,66),(11,79,25,65),(12,78,26,64),(13,77,27,63),(14,76,28,62),(29,104,43,90),(30,103,44,89),(31,102,45,88),(32,101,46,87),(33,100,47,86),(34,99,48,85),(35,98,49,112),(36,97,50,111),(37,96,51,110),(38,95,52,109),(39,94,53,108),(40,93,54,107),(41,92,55,106),(42,91,56,105)]])

C4.12D28 is a maximal subgroup of
M4(2).19D14  D28.2D4  D7×C4.10D4  D28.7D4  D4.9D28  D4.10D28  C8.20D28  C8.24D28  M4(2).31D14  D4.3D28  D4.5D28  M4(2).13D14  D28.38D4  M4(2).16D14  D28.40D4
C4.12D28 is a maximal quotient of
C42.2D14  (C2×Dic7)⋊C8  C28.47D8  C28.2D8  M4(2)⋊Dic7

41 conjugacy classes

class 1 2A2B4A4B4C4D7A7B7C8A8B8C8D14A14B14C14D14E14F28A···28F28G28H28I56A···56L
order1224444777888814141414141428···2828282856···56
size1122228282224428282224442···24444···4

41 irreducible representations

dim1111122222244
type++++++++--
imageC1C2C2C2C4D4D7D14D28C7⋊D4C4×D7C4.10D4C4.12D28
kernelC4.12D28C4.Dic7C7×M4(2)C2×Dic14C2×Dic7C28M4(2)C2×C4C4C4C22C7C1
# reps1111423366616

Matrix representation of C4.12D28 in GL4(𝔽113) generated by

678100
11210000
006781
00112100
,
008040
00133
338100
278000
,
804000
13300
008040
00133
G:=sub<GL(4,GF(113))| [67,112,0,0,81,100,0,0,0,0,67,112,0,0,81,100],[0,0,33,27,0,0,81,80,80,1,0,0,40,33,0,0],[80,1,0,0,40,33,0,0,0,0,80,1,0,0,40,33] >;

C4.12D28 in GAP, Magma, Sage, TeX

C_4._{12}D_{28}
% in TeX

G:=Group("C4.12D28");
// GroupNames label

G:=SmallGroup(224,30);
// by ID

G=gap.SmallGroup(224,30);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,121,31,362,86,297,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=1,b^4=c^2=a^14,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^21*b^3>;
// generators/relations

Export

Subgroup lattice of C4.12D28 in TeX

׿
×
𝔽